Компас морской. Как устроен морской компас. Самодельный компас из подручных средств

12.12.2023 Ноутбуки

Глава IX . Навигационные приборы и инструменты.

Для обеспечения безопасности плавания, контроля за движением судна и его местонахождением относительно береговых предметов в судовождении применяются различные навигационные приборы и инструменты:

а) для определения направлений - компасы, пеленгаторы;

б) для определения скорости хода судна и пройденного им расстояния - лаги (ручные, механические и т. д.);

в) для определения глубины моря - лоты (ручные, механические и эхолоты);

г) угломерные инструменты (секстаны), часы, бинокли, оптические дальномеры;

д) инструменты для работы на карте - транспортир штурманский, линейка параллельная, циркуль, протрактор, грузики для карт.

Для маломерных судов основными навигационными приборами являются магнитные компасы, ручные лаги, лоты, прокладочный инструмент, бинокль и часы.

§ 30. Магнитные компасы.

1. Назначение и принцип действия.

Компасом называют навигационный прибор, предназначенный для определения курса судна и направлений на различные береговые или плавучие предметы, находящиеся в поле зрения судоводителя. Компас используется также для определения направления ветра и дрейфа судна. По показанию магнитного компаса производится управление судном, с его помощью определяют пеленги на береговые предметы. Обычно магнитный компас устанавливается на высоком открытом месте в диаметральной плоскости судна.

В магнитном компасе использовано свойство магнитной стрелки устанавливаться своими концами в направлении действующего на нее магнитного поля. На стрелку судового компаса, кроме магнитного поля земли, действует также магнитное поле, создаваемое на судне железным корпусом и железными предметами оборудования. Под действием этих двух сил магнитная стрелка устанавливается в плоскости компасного меридиана. Магнитный компас подвержен влиянию и других внешних сил, возникающих при качке, поворотах судна, которые выводят стрелку из устойчивого положения. На стрелку компаса влияет также вибрация корпуса от работы двигателя.

У морских * магнитных компасов роль стрелки выполняет система из четырех, шести и более тонких магнитов, помещенных в котелок с жидкостью, обеспечивающей быстрое гашение колебаний магнитной системы.

Воздушный поплавок поддерживает магнитную систему на плаву, что обеспечивает минимальное трение в точке подвеса. Морской магнитный компас снабжен специальным устройством - девиационным прибором, уменьшающим воздействие на магнитную систему компаса магнитного поля железного корпуса судна. С помощью карданового подвеса обеспечивается горизонтальное положение котелка во время качки, крена и дифферента.

2. Устройство 127-миллиметрового магнитного компаса марки ГУ.

Морской магнитный 127-миллиметровый компас состоит из картушки, котелка, заполненного компасной жидкостью, пеленгатора, нактоуза. Для защиты в непогоду и для освещения картушки ночью имеется устройство, названное шаровым осветительным прибором.


Рис. 62 Картушка магнитного компаса: 1 - магнитные стрелки; 2 - картушка; 3 - поплавок

Картушка (рис. 62) является основной частью компаса. Она состоит из системы магнитных стрелок, поплавка с латунным ободком и диска со шкалой. Магнитная система состоит из шести стрелок. Поплавок изготовляется из тонкой листовой латуни. К нему припаиваются стрелки, помещенные в латунные пеналы. Поплавок уменьшает вес картушки и снижает давление на шпильку. Вдоль вертикальной оси поплавка сделано сквозное отверстие для топки, изготовленной из сапфира или агата. Своим нижним вогнутым основанием она соприкасается с острием компасной шпильки. Латунный ободок припаян к поплавку. К ободку винтами крепится опорный диск, вырезанный из слюды, на который наклеен бумажный диск картушки с градусной шкалой. Цена одного деления шкалы 1°. Большими латинскими буквами отмечены главные N , S , О, W и четвертные NO , NW , SO , SW румбы.

Котелок (рис. 63) представляет собой латунный резервуар, разделенный на две камеры: верхнюю - основную и нижнюю - дополнительную. В центре дна верхней камеры установлена латунная колонка со сквозным отверстием внутри. На верхнюю часть колонки на резьбе посажена компасная шпилька с напаянным на конце кусочком иридия. Внутри верхней камеры установлены две курсовые нити. Носовая курсовая черта служит индексом для отсчета курса судна. Внутренняя часть камеры окрашена в белый цвет. Дополнительная камера предназначена для компенсации объема жидкости при изменении температуры. Дном дополнительной камеры является тонкая латунная гофрированная диафрагма. При увеличении объема жидкости латунная диафрагма прогибается вниз, увеличивая объем нижней камеры. В среднюю часть диафрагмы вставлено небольшое световое стекло с отверстием посредине, закрытым пробкой. Через это отверстие производится замена или затачивание шпильки. Снизу картушка освещается электрической лампочкой, ввернутой в гнездо донной части котелка. Сверху котелок закрывается толстым стеклом, установленным на резиновой прокладке. Стекло закрепляется латунным азимутальным кольцом, разбитым на градусы от 0 до 360. По шкале азимутального кольца определяются курсовые углы видимых предметов с помощью пеленгатора. Нулевое деление шкалы азимутального круга смещено от диаметральной плоскости судна влево на 30° для удобства пользования пеленгатором. В нижней части котелка имеется свинцовый груз, удерживающий плоскость азимутального круга котелка в горизонтальном положении. Котелок заполнен компасной жидкостью из 43% раствора этилового спирта. Доливка компасной жидкости производится через боковое отверстие в нижней камере котелка. Кардановый подвес позволяет котелку сохранять горизонтальное положение при качке.



Рис. 63. 127-миллиметровый компасный котелок с донным освещением системы ГУ: 1 - отражатель света; 2 - шпилька; 3-магнитные стрелки; 4 - курсовая черта; 5 - карданное кольцо; 6 - цапфа; 7-картушка; 8 - топка; 9 - поплавок; 10 - стекло; 11 - азимутальный круг; 12 - резиновая прокладка; 13 -верхняя камера; 14 - нижняя камера; 15 - диафрагма; 16 - световое окно; 17 - кольцо для вытаскивания патрона; 18 - патрон; 19 - электрическая лампочка

Пеленгатор (рис. 64) служит для определения направления на видимые предметы. Он состоит из основания, предметной и глазной мишеней, чашки для установки дефлектора. Основание пеленгатора изготовляется в виде крестовины или кольца. Пеленгатор ставится на азимутальном кольце компаса и поворачивается на нем в любом нужном направлении. Слева от глазной мишени расположен индекс для снятия отсчета с азимутального круга. Предметная мишень - это рамка, укрепленная на шарнире. Вдоль рамки натянута медная проволока - прицельная нить предметной мишени. Предметная мишень снабжена темным откидным зеркалом, которое необходимо для пеленгования небесных светил.

Глазная мишень представляет собой планку с прорезью. На мишень надета передвижная каретка с закрепленной в ней призмой, через которую производится отсчет с картушки компаса. 3 солнечную погоду глазная мишень прикрывается светофильтром. Чашка входит в комплект пеленгатора и служит для установки на нее прибора - дефлектора при производстве девиационных работ. При работе с пеленгатором судоводитель должен помнить, что призма дает отсчет шкалы в перевернутом изображении (справа налево).

Нактоуз (рис 65) представляет собой шкафчик с открывающейся в корму дверцей. Устанавливается и крепится к палубе на деревянной подушке. В нактоузе помещается девиационный прибор, предназначенный для уничтожения девиации. В верхнем части снаружи нактоуза размещены бруски, шары мягкого железа и магниты-уничтожители, предназначенные для компенсации девиации. На верхнем основании нактоуза укреплена латунная шейка с пружинным подвесом, на который подвешивается компас с карданным кольцом.



Рис 64. Пеленгатор 127-миллиметрового компаса: 1 - стойка для проворачивания пеленгатора; 2 -индекс; 3 - чашка пеленгатора; 4 - откидное зеркало; 5 - пеленгаторная нитка; 6 - предметная мишень; 7 - глазная мишень; 8 - откидной щиток; 9 - щель для дневного пеленгования; 10 - призма, 11 - откидной щиток призмы; 12 -винтики, крепящие оправу призмы; 13 - цветные стекла; 14 - лапки

Шаровой осветительный прибор (рис. 66) предназначен для освещения котелка компаса в случае отсутствия донного электрического освещения. С обеих сторон прибора вставлено по одному масляному фонарю. Кроме фонарей, в устройстве осветительного прибора предусмотрена электрическая лампочка. Пеленгование предметов с осветительным прибором производится через открывающиеся окна. Большое окно должно быть обращено к наблюдателю. Кроме осветительного прибора, может использоваться бра со щелевым отверстием и лампой внутри.

Конструктивно МК в значительной степени схожи, поэтому устрой­ство отдельных его узлов рассмотрим на примере компаса КМО-Т.

Котелок компаса (рис. 1.) состоит из корпуса, сверху и снизу закры­того прозрачными стеклянными крышками 1 и 2. Внутренняя полость котелка разделена стеклянным диском 3 на две части (камеры) – верхнюю 6 и нижнюю 9. В верхней части находится картушка 10 и шпилька 5. Магнитная система картушки состоит из трех пар стержневых маг­нитов 3. Градусные деления, цифры и обозначения выполнены в виде сквоз­ных отверстий (просечек) в шкале картушки.

На азимутальном кольце 14 котелка, прижимающем верхнюю стеклянную крышку, нанесены гра­дусные деления азимутального круга. Котелок заполнен компасной жидко­стью, которая представляет собой 64% водный раствор гидролизного технического спирта. На диске 3 закреплена колонка 4, в которую ввинчивается шпилька, а на её остриё топкой опирается картушка. По периметру камеры котелка к корпусу прикреплен кольцевой экран 11. В пространство между корпусом и экра­ном могут быть удалены пузырьки воздуха. Для удаления пузырьков нужно повернуть котелок на бок и подогнать пузырек к отверстию, имеющемуся в нижней части экрана.

Для отсчета курса по шкале картушки служит прикрепленный к внутренней стенке экрана индекс, выполненный в виде уголка с прорезью - курсовой чертой.

В нижней части котелка имеется диафрагма, которая находится между дном и диском 3 и обеспечивает компенсацию изменения объема жидкости при изменении температуры. Отверстие с винтовой пробкой для доливки в котелок компасной жидкости расположено на боковой стенке корпуса.

Шпилька ввинчивается через закрываемое пробкой донное отверстие во втулку 8 в стеклянном диске 3.

В верхней части на компас устанавливаются пеленгаторы . Они служат для пеленгования предметов и небесных светил с целью определения места судна, оценки поправки компаса и решения ряда других задач. С помощью пеленгаторов определяют также курсовые углы ориентиров.

Пеленгование можно осуществлять как непосредственно с котелка магнитного компаса, так и с репитеров для пеленгования. В первом случае, как правило, снимается отсчёт обратного пеленга, т.е. пеленга с ориентира на судно. Этот пеленг отличается от прямого на 180 0 . С репитеров для пеленгования (общих для гирокомпасов и МК) при наличии дополнительной зеркальной шкалы, сдвинутой относительно основной на угол 180 0 , снимаются значения прямого пеленга на ориентир.

Пеленгаторы могут отличаться друг от друга размерами, конструктивными особенностями, но все они имеют основание 7 (рис. 2), глазную мишень 4 , предметную мишень 2 , зеркало 1 для пеленгования небесных светил, расположенных на высоте более 20 0 , и набор светофильтров 3 , используемых для пеленгования Солнца. В комплект пеленгаторов, предназначенных для пеленгования с котелка компаса, входит перемычка 6 с чашкой 8 , на которой устанавливаются приборы при проведении девиационных работ.

Глазная мишень представляет собой планку с широкой вертикальной прорезью. Через эту прорезь можно наблюдать предметы при плохой видимости. При пеленговании днем прорезь прикрывают откидной шторкой с узкой щелью.

На планку надета каретка, несущая трехгранную призму 5 в металлической оправе, которая обеспечивает небольшое увеличение изображения делений картушки. Через призму снимают отсчет обратного магнитного пеленга.

На съемном мостике находится чашка, на которую устанавливают дефлектор – прибор, используемый при проведении девиационных работ, имеющих своей целью уменьшение ошибок компаса. Мостик закрепляется на компасе двумя гачками 9 . Чашка выполнена в форме цилиндра с фланцем, в которых проточены три отверстия для крепежных винтов. В цилиндрическую часть чашки ввинчен горизонтальный направляющий штифт, позволяющий правильно ориентировать дефлектор относительно визирной плоскости пеленгатора.

На пеленгаторе имеется индекс 10 для его ориентации относительно азимутальной шкалы компаса. Этот индекс смещен, как и азимутальная шкала, на 30 0 относительно визирной плоскости пеленгатора.

Нактоуз компаса (рис. 3), изготовленный из немагнитного сплава, со­стоит из основания 1 и корпуса 2. В нактоузе под колпаком 3 помещен котелок, а в его корпусе размещаются девиационный прибор, девиационная труба, специальное железо и элементы оптиче­ской системы. Нактоуз имеет в кормовой стороне два прямоугольных ок­на 5 и 6, закрываемых крышками: верхнее для доступа к девиационному прибо­ру, нижнее - для доступа к разъемам кабелей питания и элементам оптиче­ской системы. Окно с носовой стороны (на рисунке не показано) служит для доступа к верхней лин­зе оптической системы.

В верхней части колпака 3 на­ходится защитное стекло, которое имеет съемную предохранительную крышку. Четыре окна 15 с откидными крышками в колпаке используются для работы с пеленгатором при осадках.

Внутри нактоуза находится девиационный прибор. К нему относятся магниты для уничтожения полукруговой деви­ации и креновой магнит с уст­ройствами для изменения их по­ложения.

Магниты, создающие продоль­ную и поперечную силу, закреп­лены на шестернях 12 (рис. 4) с ручным при­водом. Две шестерни с двумя маг­нитами для создания продольной силы расположены в ДП судна. Они одновременно поворачиваются на равные углы во встречных на­правлениях вокруг горизонтальной оси с помощью рукоятки, на кото­рой нанесена буква В. .

Точно таким же образом уст­роено приспособление для поворо­та вокруг горизонтальной оси тех двух магнитов, которые предназна­чены для компенсации поперечной судовой силы, вызывающей полукруговую девиацию. Эти магниты, так же как и несущие их шестерни, расположены перпендикулярно ДП. Рукоятка для их вращения обо­значена буквой С. В отдельных случаях в нактоуз в ДП судна и перпендикулярно ДП устанавливаются дополнительные магниты 9. Их закрепляют в гори­зонтальном положении в гнездах вблизи основных магнитов.

Магнит 6, с помощью которого уничтожают креновую девиа­цию, находится в трубе 7 девиационного прибора в латунной оп­раве. Чтобы обеспечить переме­щение кренового магнита в вер­тикальном направлении, внутри трубы помещен стержень 14 с резь­бой. Вращая головку стержня за рукоятку 10, можно перемещать магнит вверх или вниз и устанавливать его на требуемом расстоянии от кар­тушки. После установки положение магнита фиксируется контрагайкой 11.

Четвертную девиацию ком­паса КМО-Т уничтожают с по­мощью четырех продольных брусков 3 и одной или двух попе­речных индукционных пластин 15. Бруски устанавливают на крон­штейнах 4 и в гнездах хомута немного ниже уровня стрелок картушки. Два бруска имеют прямоугольное сечение, а два дру­гих - круглое. Хомут с брусками может быть повернут на опреде­ленный угол относительно ДП, чем обеспечивается одновременное уничтожение обоих составляющих четвертной девиации. В нактоузе под котелком предусмотрено место 13 для компенсатора электромагнитной девиации.

Оптическая система (рис. 3) передает изображение шкалы картушки, поэтому рулевой видит светлые деления на темном фоне. В ночное время картушка подсвечивается снизу лампами, и рулевой видит на светлом фоне темное изображение делений картушки.

Труба оптического тракта состоит из трех секций: неподвижной 7 и двух выдвижных. Неподвижная секция крепится болтами к основанию нактоуза. Верхняя выдвижная секция 9 может перемещаться вверх и вниз, а нижняя 11 -также и разворачиваться вокруг оси.

При установке компаса на судне нактоуз размещается на верхнем мостике. Труба оптической системы через отверстие в палубном настиле и подволоке пропускается в рубку. Компас имеет прибор питания для его освещения и обогрева.

Оптическая схема системы представлена на рис. 5.Онасостоит из осветительной лампы 2, защитного стекла 3, двух линз (верхняя 4, нижняя 6 )обогреваемого стекла 7 и зеркала 9. Некоторые из перечисленных деталей расположены в нактоузе 5, а некоторые - в металлической трубе под ним.

Как показано на рисунке, на зеркало проектируется световой пучок от освещенного лампочкой сектора нижней стороны картушки 1 . Поэтому изображение шкалы в зеркале отражается в наи­более удобном для наблюдателя виде - значения градусных деле­ний и оцифровка читаются слева направо.

В качестве примера выполнения конструкции прибора на рис. 6 показана верхняя часть нактоуза МК “Сектор”. Здесь, котелок 1 совместно с кардановым подвесом установлен в нактоузе 2 с помощью пружин 6 , предохраняющих его от влияния вибрации и ударов. Котелок снабжен пеленгатором 3 . С помощью шкал 4 и 5 измеряются курс судна и курсовые углы ориентиров, соответственно. Как уже было указано выше, бруски 7 и 8 используются для компенсации девиации МК.

Рассмотренный вариант устройства котелка МК является типовым. Однако наряду с ним применяются и другие конструктивные варианты. Так, с целью снижения влияния качки судна на работу компаса в ряде изделий, например, в компасе КМ-145 (рис. 7), поплавок 1 снабжается дополнительным кожухом 2 , сообщающимся с рабочей камерой котелка, в результате чего он оказывается заполненным поддерживающей жидкостью 3 . Наличие указанного кожуха приводит к увеличению периода собственных колебаний подвижной системы компаса, что положительно сказывается на его работе.

В компасах для маломерных судов “Галс” (рис. 8) картушка 2 , включающая в себя два магнита 1 , не имеет поплавка. Шкалы с ценой деления 5 0 нанесены на ее внешней горизонтальной 3 и боковой цилиндрической 4 поверхностях. Элементы опорного устройства, входящие в состав картушки, включают в себя корундовый подпятник и коническую деталь, предохраняющую ее от боковых перемещений. В корпус картушки вставлен упор-указатель 5 , с шариком на свободном конце, служащий для предотвращения ее вертикального перемещения и одновременно играющий роль указателя крена и дифферента судна. Последнее возможно потому, что картушка обладает свойствами физического маятника.

Магнитный компас КМС 160 (компас магнитный сферический) предназначен для установки на стол пульта в ходовой рубке судна и это определяет особенности его конструкции. Магнитная система картушки (рис. 9) содержит 4стержневых магнита диаметром 3 мм, выполненных из сплава 52 КФТМ. Два средних магнита имеют длину 75 мм, а два крайних – 55 мм. Диаметр шкалы картушки составляет 125 мм, ее цена деления – 1 0 . Остаточный вес картушки в жидкости ПМС-5 составляет 0,035 Н.

Картушка устанавливается на шпильке (рис. 10), которая ввинчивается во внутреннюю рамку 1 карданового подвеса. Опоры наружного кольца 3 карданового подвеса устанавливаются в корпусе 4 котелка компаса. Груз 5 обеспечивает вертикальность оси шпильки в процессе качки судна.

Рабочая камера котелка закрыта сверху прозрачной полусферической крышкой 6 и полностью заполнена жидкостью ПМС-5. Вследствие этого возникает увеличение изображения шкалы и ее видимый диаметр возрастает до 160 мм.

В нижней стенке корпуса имеется отверстие 7 , соединяющее рабочую камеру с компенсационной камерой. В компенсационной камере воздушный объем отделен от жидкости эластичной диафрагмой 8 . Колебания жидкости, вызванные механическими воздействиями на компас, гасятся чашкой 9 и экраном 10 . В центре дна котелка имеется отверстие, закрытое пробкой 11 , для заполнения котелка жидкостью. Ко дну котелка может крепиться девиационный прибор.

Не все компасы устанавливаются в нактоузе. Чаще всего это имеет место у компасов, предназначенных для использования на маломерных судах. К ним относится упомянутые выше компас – горизонт «Галс» (рис. 11), устанавливаемый непосредственно в пульте рулевой рубки и компас КМС-160. Первый не имеет устройств для компенсации влияния судового магнитного поля, второй имеет указанные компенсаторы.

В последнее время в картушках МК стали использоваться не стержневые, а кольцевые магниты. Один из конструктивных вариантов такой картушки показан на рис. 12.

Чувствительный элемент состоит из корпуса 1 с кольцевым магнитом 2, имеющим наружный диаметр 52 мм, диаметр отверстия 20 мм и толщину 1 мм. Магнит изготовлен из специального сплава и намагничен в однородном магнитном поле. В состав чувствительного элемента входит поплавок 3, состоящий из основания и крышки. В поплавке установлена втулка 4, соединенная с конусом. Во втулке находится подпятник 6, закрепленный винтом 7. На кольцевой полке корпуса установлен диск 8 со шкалой, разбитой на 360 делений.

ЧЭ имеет в компасной жидкости (70% этилового спирта, 10% глицерина, 20% дистиллированной воды) вес (5,6±03)10 -2 Н. Период колебаний ЧЭ при начальном отклонении его от магнитного меридиана на 40° при Н=12 А∙м -1 составляет (20±4) с.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ :

1. Чем отличается магнитные компасы КМ-145-3 и КМ-145-4? КМ-145-4 и КМ-145-6?

2. Сколько магнитов содержит картушка компаса "Сектор"?

3. Какую роль играет диафрагма в котелке компаса?

4. С какой целью в компасах используют дополнительную камеру, заполненную поддерживающей жидкостью?

5. Каков порядок установки и съема пеленгатора?

6. Что размещается в нактоузе компаса?


Любой судоводитель, как в древности, так и сейчас, оказавшись в открытом море вне видимости берегов, прежде всего хочет знать, в каком направлении движется его ко­рабль. Прибор, по которому можно определить курс корабля, хорошо известен - это компас. По свидетельству большинства ученых-историков, магнитная игла - предок со­временного компаса - появилась примерно три тысячи лет назад. Общение между на­родами в те времена было затруднено, и, пока чудесный указатель направления дошел до берегов Средиземного моря, миновало немало веков. В результате это изобретение попа­ло в Европу только в начале II тысячелетия н. э., а затем уже широко распространилось.

Едва оказавшись в Европе, прибор претерпел ряд усовершенствований и получил на­звание компас, сыграв огромную роль в развитии цивилизации. Лишь магнитный компас вселил в людей уверенность в море, помог им преодолеть страх перед океанскими про­сторами. Великие географические открытия были бы просто немыслимы без компаса.

Имени изобретателя компаса история не сохранила. И даже страну, подарившую человечеству этот замечательный прибор, люди науки не могут назвать точно. Одни при­писывают его изобретение финикийцам, другие уверяют, что первыми, кто обратил вни­мание на чудесное свойство магнита устанавливаться в плоскости магнитного меридиа­на, были китайцы, третьи отдают предпочтение арабам, четвертые упоминают францу­зов, итальянцев, норманнов и даже древних майя, последних - на том основании, что когда-то в Эквадоре был найден магнитный стержень, который (при пылком воображе­нии) можно было посчитать прообразом магнитной стрелки.

Сначала прибор для определения стран света был очень прост: магнитную иглу вты­кали в кусочек пробки и опускали в чашку с водой, которую впоследствии стали называть котелком компаса. Иногда вместо пробки брали кусочек тростника или просто вставля­ли иглу в соломинку. Даже это нехитрое устройство принесло морякам неоценимые удоб­ства, с ним можно было выходить в открытое море и не бояться, что не найдешь дорогу назад к родному берегу. Но морякам-то хотелось большего. Они смутно чувствовали, что чудесная плавающая стрелка, точность показаний которой была, понятно, очень невысо-ка, еще не раскрыла всех своих великолеп­ных возможностей. Да и вода нередко вып­лескивалась из котелка, бывало, даже вме­сте со стрелкой. Только в XIII веке появил­ся компас с сухим котелком, а главное - с прикрепленной к стрелке картушкой. Картушка была нехитрым на первый взгляд, но поистине замечательным изоб­ретением: небольшой кружок из немаг­нитного материала вместе с жестко при­крепленной к нему магнитной стрелкой свободно подвешивается на острие верти­кальной иглы. Сверху на картушку нано­сили четыре главных румба: Норд, Ост, Зюйд и Вест, - да так, чтобы Норд точно совпадал с северным концом стрелки. Дуги между главными румбами делили на не­сколько равных частей.

Вроде бы ничего особенного? Но до этого старый компас с неподвижной кар­тушкой каждый раз приходилось повора­чивать в горизонтальной плоскости до тех пор, пока северный конец стрелки не со­впадал с Нордом. Только тогда можно было определить курс, по которому идет судно. Это, конечно, было очень неудобно. Но если картушка сама вращалась вместе со стрелкой и сама устанавливалась в плос­кости меридиана, достаточно было лишь мельком взглянуть на нее, чтобы опреде­лить любое направление.

И все же, несмотря на вносимые усо­вершенствования, компас долго оставался достаточно примитивным прибором. В России в XVII - начале XVIII века наибо­лее искусно его изготавливали поморы в городах и селах нашего Севера. Это была круглая коробочка диаметром 4-5 санти­метра из моржовой кости, которую помо­ры хранили у пояса в кожаном мешочке. В центре коробочки на костяной шпиль­ке находилась картушка с укрепленными снизу намагниченными металлическими иглами-стрелками. Если компасом (или меткой, как называли его поморы) не пользовались, сверху на него надевали глу­хую крышку. О подобном приборе напи­сано в Морском уставе Петра I: «Должны компасы добрым мастерством делать и смотреть, чтобы иглы, на чем компас вертится, были остры и крепки и не ско­ро бы сламывались. Также чтобы прово­лока (имеется в виду стрелка. - В.Д) на компасе к Норду и Зюйду крепко была на­терта магнитом, дабы компас мог быть верным, в чем надлежит крепкое смот­рение иметь, ибо в том зависит ход и целость корабля».

В наше время котелок компаса наглу­хо закрывается толстой стеклянной крыш­кой, туго прижатой к нему медным коль­цом. Сверху на кольцо наносят деления от О до 360° - по часовой стрелке от Норда. Внутри котелка протягивают две черные медные вертикальные проволочки, так чтобы одна из них приходилась точно под 0°, а другая - под 180°. Эти проволочки называются курсовыми чертами.

Компас на корабле устанавливается так, чтобы линия, проведенная между кур­совыми чертами, точно совпадала с лини­ей нос - середина кормы (или, как гово­рят во флоте, с диаметральной плоско­стью судна).

О том, кто именно изобрел компас с вращающейся картушкой, история также ответа не дает. Правда, существует распро­страненная версия, что в 1302 году италь­янец Флавио Джойя (по другим источни­кам, Жиойя) укрепил на магнитной стрел­ке картушку, разделенную на 32 румба, а стрелку поместил на острие шпильки. Бла­годарные земляки даже поставили Джойе бронзовый памятник на его родине - в городе Амальфи. Но уж если кому-то дей­ствительно стоило бы поставить памятник, так это нашему соотечественнику Петру Перегрину. В его сочинении «Послание о магнитах», датированном 1269 годом и посвященном описанию свойств магнита, содержатся достоверные сведения об усо­вершенствовании им компаса. Компас этот картушки не имел. На вертикальной шпильке была укреплена магнитная стрел­ка, а азимутальный круг на верхней части котелка был разделен на четыре части, каждая из которых имела разбивку в гра­дусах от 0 до 90. На азимутальный круг на­девался подвижный визир для пеленгова­ния, пользуясь которым можно было оп­ределять направления на береговые предметы и на светила, находящиеся не­высоко над горизонтом. Визир этот был очень похож на современный пеленгатор, до сих пор исправно служащий флоту.

Прошло примерно полтора века, прежде чем после Перегрина появилось новое изобретение, позволившее еще боль­ше облегчить работу с компасом.

Море очень уж редко бывает спокой­ным, и любое судно испытывает качку, а она, естественно, отрицательно влияет на работу компаса. Иногда волнение моря бывает настолько сильным, что вообще выводит компас из строя. Поэтому воз­никла необходимость в приспособлении, которое позволило бы котелку компаса оставаться спокойным при любой качке.

Как и большинство гениальных изоб­ретений, новая подвеска компаса была предельно проста. Котелок компаса, не­сколько утяжеленный снизу, подвешивал­ся на двух горизонтальных полуосях, опи­рающихся на кольцо. Это кольцо, в свою очередь, крепилось на двух горизонталь­ных полуосях, перпендикулярных первым, и подвешивалось внутри второго кольца, неподвижно скрепленного с судном. Та­ким образом, как бы круто и часто ни на­клонялось судно, причем в любую сторо­ну, картушка оставалась всегда горизон­тальной. По имени итальянского математика Д. Кардано, предложившего это замечательное устройство, подвес на­звали кардановым.

Португальцы же предложили делить картушку компаса на 32 румба. Они оста­лись на картушках морских компасов до нашего времени. Каждый получил свое название, и еще сравнительно недавно, лет пятьдесят назад, можно было застать где-нибудь в кубрике матроса, который зуб­рил компас с тенями: «Норд Норд тень Ост, Норд Норд Ост, Норд Ост тень Ост, Норд Ост, Норд Ост тень Зюйд» и так да­лее. Тень в данном случае по-русски озна­чает: в сторону. Сейчас же, хотя все 32 рум­ба остались на многих современных ком­пасах, на них прибавились и деления в градусах (а иногда и в долях градуса). И в наше время, сообщая курс, который надо держать рулевому, предпочитают гово­рить, например: «Курс 327°!» (вместо пре­жнего «Норд Вест тень Норд», что, по су­ществу, одно и то же - разница в 1/4° округляется).

С тех пор как в XIX веке магнитный компас обрел свою современную конст­рукцию, он усовершенствовался очень не­значительно. Но зато далеко вперед про­двинулось представление о земном магне­тизме и о магнетизме вообще. Это обусловило ряд новых открытий и изоб­ретений, которые если собственно компа­са и не касаются, то к навигации имеют прямое отношение.

Чем сложнее были задачи, которые ложились на военные и торговые (коммер­ческие) флоты, тем большие требования к показаниям компасов предъявляли моря­ки. Точнее стали наблюдения, и вдруг со­вершенно неожиданно для себя моряки заметили, что главный их помощник, ком­пас, которому они безгранично доверялись столько веков, очень редко дает правиль­ные показания. Любой магнитный компас на два-три градуса, а иногда и намного больше, мягко говоря, привирает. Замети­ли, что в разных местах Земли ошибки компаса не одинаковы, что с годами в од­них точках они увеличиваются, в других - уменьшаются, и что, чем ближе к полюсу, тем больше эти ошибки.

Но в начале XIX века на помощь мо­рякам пришла наука и к его середине спра­вилась с этой бедой. Немецкий ученый Карл Гаусс создал общую теорию земного магнетизма. Были проделаны сотни тысяч точных измерений, и теперь на всех нави­гационных картах отклонение стрелки компаса от истинного меридиана (так на­зываемое склонение) указано прямо на карте с точностью до четверти градуса. Здесь же указывается, к какому году при­ведено склонение, знак и величина его го­дового изменения.

Работы штурманам прибавилось - теперь стало нужно вычислять поправку на изменение склонения. Это было спра­ведливым лишь для средних широт. В вы­соких же широтах, то есть в областях от 70° северной и южной широт до полюсов, магнитному компасу вообще было верить нельзя. Дело в том, что в этих широтах очень большие аномалии магнитного скло­нения, так как сказывается близость маг­нитных полюсов, не совпадающих с гео­графическими. Магнитная стрелка стре­мится тут занять вертикальное положение. В этом случае и наука не помогает, и ком­пас врет без зазрения совести, а порой на­чинает и вовсе то и дело менять свои пока­зания. Недаром, собираясь к Северному по­люсу на самолетах (1925), знаменитый Амундсен не решился довериться магнит­ному компасу и придумал специальный прибор, который назвали солнечным ука­зателем курса. В нем точные часы повора­чивали маленькое зеркальце вслед за сол­нцем, и, пока самолет летел над облаками, не отклоняясь от курса, «зайчик» не ме­нял своей позиции.

Но на этом злоключения магнитного компаса не кончились. Судостроение бы­стро развивалось. В начале XIX века появи­лись пароходы, а вслед за ними и металли­ческие суда. Железные корабли быстро стали вытеснять деревянные, и вдруг... Один за другим при загадочных обстоя­тельствах утонуло несколько больших па­роходов. Разбирая обстоятельства круше­ния одного из них, на котором погибло около 300 человек, специалисты установи­ли, что причиной аварии были неверные показания магнитных компасов.

В Англии собрались ученые и мореп­лаватели, чтобы разобраться, что же тут происходит. И пришли к выводу, что ко­рабельное железо столь сильно влияет на компас, что ошибки в его показаниях просто неизбежны. Выступивший на этом со­брании доктор богословия Скорсби, быв­ший когда-то известным капитаном, по­казал на опыте присутствующим влияние железа на стрелку магнитного компаса и сделал вывод: чем больше масса железа, тем больше она отклоняет стрелку компа­са от меридиана. «Мы, - сказал Скорс­би, - плаваем по старинке, как на дере­вянных судах, то есть без учета влияния корабельного железа на компас. Боюсь, что никогда не удастся добиться на стальном судне правильных показаний компаса...» Отклонение стрелки магнит­ного компаса под влиянием судового же­леза назвали девиацией.

Противники железного судостроения ободрились. Но и на этот раз наука при­шла на помощь магнитному компасу. Уче­ные нашли способ свести это отклонение к минимуму, разместив рядом с магнит­ным компасом специальные магниты-уничтожители. Пальма первенства в этом, безусловно, принадлежит капитану Мэтью Флиндерсу, по имени которого и назван первый уничтожитель - флиндерсбар. Их стали размещать в нактоузах рядом с ко­телком компаса.

Прежде нактоузом называли деревян­ный ящичек, в который на ночь вместе с фонарем ставили компас. Английские мо­ряки так его и называли: ночной домик - найт хаус. В наше время нактоуз - дере­вянный четырех- или шестигранный шкафчик, на котором устанавливают ко­телок компаса. Слева и справа от него на нактоузе находятся массивные железные шары размером с маленькую дыньку. Их можно передвигать и закреплять поближе и подальше от компаса. Внутри шкафчика запрятан целый набор магнитов, которые тоже можно передвигать и закреплять. Изменение взаимного расположения этих шаров и магнитов почти полностью унич­тожает девиацию.

Сейчас перед выходом в рейс, когда груз уже погружен и закреплен, на судно поднимается девиатор и в специально отведенном районе моря на ходу часа пол­тора осуществляет уничтожение девиации. По его командам судно движется разны­ми курсами, а девиатор перемещает шары и магниты, уменьшая влияние судового железа на показания компаса. Уходя с бор­та, он оставляет маленькую таблицу оста­точной девиации, которую штурманам приходится учитывать каждый раз, когда корабль изменяет курс, как поправку на девиацию. Вспомним роман Жюля Верна «Пятнадцатилетний капитан», где негодяй Негоро подложил под нактоуз компаса то­пор, резко изменив его показания. В ре­зультате судно вместо Америки приплы­ло в Африку.


Необходимость периодически уничто­жать и определять остаточную девиацию заставила задумываться над проблемой создания немагнитного компаса. К началу XX столетия были хорошо изучены свой­ства гироскопа, и на этой основе сконст­руирован гироскопический компас. Прин­цип действия гирокомпаса, созданного немецким ученым Аншютцем, состоит в том, что ось быстро вращающегося волч­ка сохраняет неизменным свое положение в пространстве и может быть установлена по линии север - юг. Современные гиро­компасы заключены в герметически запа­янную сферу (гидросферу), которая, в свою очередь, помещена во внешний корпус. Гидросфера плавает во взвешенном состо­янии в жидкости. Положение ее регули­руется с помощью катушки электромаг­нитного дутья. Электромотор доводит ско­рость вращения гироскопов до 20 тысяч оборотов в минуту.

Для обеспечения комфортных условий работы гирокомпас (основной прибор) помещают в самом спокойном месте ко­рабля (поближе к его центру тяжести). С помощью электрокабелей показания ги­рокомпаса передаются на репитеры, рас­положенные на крыльях мостика, в цент­ральном посту, в штурманской рубке и других помещениях, где это необходимо.

В наши дни промышленность выпус­кает различные типы этих приборов. Пользование ими не составляет особых трудностей. Поправки к их показаниям, как правило, инструментальные. Они малы и постоянны. Но сами приборы сложны и требуют для своего обслуживания квалифицированных специалистов. Есть и дру­гие сложности в эксплуатации. Гироком­пас необходимо включать заблаговремен­но, до выхода в море, чтобы он успел, как говорят моряки, «прийти в меридиан». Что и говорить, гирокомпас обеспечивает не­сравненно более высокую точность курсоуказания и устойчивость работы в высо­ких широтах, но авторитет магнитного компаса от этого ничуть не снизился. Бое­вые действия флота в годы Великой Оте­чественной войны показали, что на кораб­лях он по-прежнему необходим. В июле 1943 года в ходе боевой операции гиро­компас на эсминце «Сообразительный» вышел из строя. Штурман перешел на маг­нитный компас и ночью, в штормовую по­году, вне видимости берегов, пройдя око­ло 180 миль (333 километров), вышел к базе с невязкой 55 кабельтовых (10,2 ки­лометров). Участвовавший в той же опе­рации лидер эсминцев «Харьков» в тех же условиях, но с исправным гирокомпасом имел невязку 35 кабельтовых (6,5 кило­метров). В августе того же года из-за по­жара на борту вышел из строя гироком­пас на канонерской лодке «Красный Аджаристан». Штурман корабля в ходе боевых действий успешно вел точную про­кладку, пользуясь только магнитными компасами.

Вот почему и сегодня даже на самых современных кораблях, оборудованных навигационными комплексами, радиотех­ническими и космическими системами, имеющими в своем составе несколько курсоуказателей, не зависящих ни от девиа­ции, ни от склонения, обязательно есть магнитный компас.

Но как бы точно мы ни измеряли курс, графически проложить его можно только на карте. Карта представляет собой плос­костную модель земного шара. Моряки используют только специально изготов­ленные, так называемые навигационные карты, расстояния на которых измеряют­ся в милях. Чтобы понять, как создавались такие карты, придется заглянуть в XV век, в те далекие времена, когда люди только-только научились наносить сушу и море на них и плавать, пользуясь ими. Были, конеч­но, карты и раньше. Но они были больше похожи на неумелые рисунки, сделанные на глазок, по памяти. Появились и карты, основанные на научных представлениях своего времени, довольно точно изобра­жавшие известные мореплавателям бере­га и моря. Конечно, и в этих картах было много ошибок, и строились они не так, как строятся карты в наше время, но все же они были подспорьем для моряков, пус­кавшихся в плавания по морям и океанам.

Это было время, полное противоречий. С одной стороны, «бывалые люди» клят­венно уверяли, что встречали в океане ужасных чудовищ, огромных морских змей, прекрасных сирен и прочие чудеса, а с другой - одно за другим совершались великие географические открытия. С од­ной стороны, святая инквизиция душила всякую живую мысль, а с другой - мно­гие просвещенные люди уже знали о ша­рообразной форме Земли, спорили о том, каков размер земного шара, имели пред­ставление о широте и долготе. Больше того, известно, что в том самом 1492 году, ког­да Христофор Колумб открыл Америку, немецкий географ и путешественник Мар­тин Бехайм уже построил глобус. Конеч­но, он был совсем не таким, как современ­ные глобусы. На глобусе Бехайма и более поздних, более совершенных моделях Зем­ли белых пятен было больше, чем точно показанных континентов, многие земли и берега изображались по рассказам «быва­лых людей», которым было опасно верить на слово. Некоторые материки на первых глобусах вообще отсутствовали. Но главное уже было - по большому кругу, перпен­дикулярному оси вращения, опоясывал модель Земли экватор, что по-латыни зна­чит уравнитель.

Плоскость, в которой он лежит, как бы разделяет земной шар пополам и уравни­вает его половины. Окружность экватора от точки, принятой за нуль, разделили на 360° долготы - по 180° к востоку и запа­ду. К югу и к северу от экватора на глобусе до самых полюсов нанесли малые круги, параллельные экватору. Их так и назва­ли - параллели, а экватор стал служить началом отсчета географической широты. Дуги меридианов, перпендикулярные эк­ватору, в Северном и Южном полушари­ях под углом друг к другу сошлись на по­люсах. Меридиан по-латыни значит «полуденный». Это название, конечно, не случайно, оно показывает, что на всей ли­нии меридиана, от полюса до полюса, пол­день (впрочем, как и в любой другой мо­мент) наступает одновременно. От эква­тора к северу и к югу дуги меридианов разбили на градусы - от 0 до 90, назвав соответственно градусами северной и южной широты.

Теперь, чтобы найти точку на карте или глобусе, достаточно было указать ее широту и долготу в градусах.

Географическая координатная сетка была наконец построена.

Но одно дело - найти точку на карте и совсем иное - отыскать ее в открытом море. Несовершенные карты, магнитный компас и примитивный угломерный ин­струмент для определения вертикальных углов - вот и все, чем располагал моряк, отправляясь в дальнее плавание. С арсена­лом даже таких навигационных приборов прийти в пункт, который находится в пре­делах видимости или пусть даже за гори­зонтом, - дело несложное. Если, конечно, вершины далеких гор, расположенных у этого пункта, были видны над горизонтом. Но стоило моряку отойти в море подаль­ше, как берега пропадали из виду и со всех сторон судно обступали однообразные волны. Даже если мореплаватель знал точ­ное направление, которое должно приве­сти его к цели, то и тогда трудно было рас­считывать на успех, так как капризные ветры и неизученные течения всегда сно­сят судно с намеченного курса. Это откло­нение от курса моряки называют дрей­фом.

Но и при отсутствии дрейфа выбрать нужное направление, пользуясь обычной картой, и провести по нему судно практи­чески невозможно. И вот почему. Допус­тим, что, вооружившись обыкновенной картой и компасом, мы задумали плавание вне видимости берегов из точки А в точку Б. Соединим эти точки прямой. Допустим теперь, что эта прямая в точке А ляжет точно по курсу 45°. Другими словами, ли­ния АБ в точке А будет расположена под углом 45° к плоскости меридиана, прохо­дящего через точку А. Направление это нетрудно удержать по компасу. И мы при­шли бы в точку Б, но при одном условии: если бы меридианы были параллельны и наша линия курса и в точке Б соответство­вала направлению 45°, как и в точке А. Но в том-то и дело, что меридианы не парал­лельны, а постепенно сходятся под углом друг к другу. Значит, и курс в точке Б будет не 45°, а несколько меньше. Таким обра­зом, чтобы прийти из точки А в точку Б, нам пришлось бы все время подворачивать вправо.

Если же, выйдя из точки А, мы будем постоянно держать курс по нашей карте 45°, то точка Б останется справа от нас, мы, продолжая идти этим курсом, пересечем все меридианы под одним и тем же углом и по сложной спирали приблизимся в кон­це концов к полюсу.

Спираль эта называется локсодромия. По-гречески это значит «косой путь». Все­гда можно подобрать такую локсодромию, которая приведет нас в любую точку. 14, пользуясь обычной картой, пришлось бы сделать много сложных вычислений и по­строений. Вот это-то моряков и не устра­ивало. Не одно десятилетие они ждали та­кую карту, по которой удобно будет про­кладывать любые курсы и плавать по любым морям.

И вот в 1589 году известный матема­тик и картограф фламандец Герард Мер-катор придумал карту, которая наконец удовлетворила моряков и оказалась на­столько удачной, что до сих пор ничего лучшего никто не предложил. Моряки всего мира и сегодня пользуются этой картой. Она так и называется: меркаторская кар­та, или карта равноугольной цилиндри­ческой меркаторской проекции.

Основания, заложенные в построение этой карты, гениально просты. Невозмож­но, конечно, восстановить ход рассужде­ний Г. Меркатора, но предположим, что рассуждал он так.

Допустим, что все меридианы на гло­бусе (который довольно точно передает взаимное расположение океанов, морей и суши на Земле) сделаны из проволоки, а параллели - из упругих нитей, которые легко растягиваются (резины в то время еще не знали). Разогнем меридианы так, чтобы они из дуг превратились в парал­лельные прямые, прикрепленные к эква­тору. Поверхность глобуса превратится в цилиндр из прямых меридианов, пересе­ченных растянувшимися параллелями. Разрежем этот цилиндр по одному из ме­ридианов и расстелем на плоскости. По­лучится географическая сетка, но мериди­аны на этой сетке не будут сходиться, как на глобусе, в точках полюсов. Прямыми параллельными линиями они будут идти вверх и вниз от экватора, а параллели - пересекать их везде под одним и тем же прямым углом.

Круглый островок у экватора как был на глобусе круглым, так и на этой карте останется круглым, в средних широтах такой же островок значительно растянет­ся по широте, а в районе полюса он будет вообще выглядеть как длинная прямая полоса. Взаимное расположение суши, моря, конфигурация материков, морей, океанов на такой карте изменятся до не­узнаваемости. Ведь меридианы остались такими, какими и были, а параллели-то ра­стянулись.

Плавать, руководствуясь такой картой, конечно, было невозможно, но это оказа­лось поправимым - надо было только уве­личивать расстояние между параллелями. Но, конечно, не просто увеличить, а в точном соответствии с тем, на сколько растя­нулись параллели при переходе намеркаторскую карту. На карте, построенной с помощь такой сетки, круглый островок и у экватора, и в любом другом участке кар­ты оставался круглым. Вот только, чем бли­же было к полюсу, тем больше места за­нимал он на карте. Другими словами, мас­штаб на такой карте от экватора к полюсам увеличивался, зато очертания объектов, нанесенных на карту, получались почти без изменений.

А как же учесть изменение масштаба к полюсам? Конечно, можно для каждой широты высчитать масштаб отдельно. Только очень хлопотным делом будет та­кое плавание, в котором после каждого передвижения к северу или югу придется делать довольно сложные расчеты. Но ока­зывается, что на меркаторской карте та­ких расчетов делать не приходится. Карта заключена в рамку, на вертикальных сто­ронах которой нанесены градусы и мину­ты меридиана. У экватора они покороче, а чем ближе к полюсу, тем длиннее. Пользу­ются рамкой так: расстояние, которое нужно измерить, снимают циркулем, под­носят к той части рамки, которая находит­ся на широте измеряемого отрезка и смот­рят, сколько минут в нем уложились. А так как минута и градус на такой карте изме­няются по величине в зависимости от ши­роты, а на самом-то деле остаются всегда одинаковыми, именно они и стали осно­ванием для выбора линейных мер, кото­рыми моряки измеряли свой путь.

Во Франции была своя мера - лье, рав­ная 1/20 градуса меридиана, что составляет 5537 метров. Англичане измеряли свои морские дороги лигами, которые тоже представляют собой дробную часть граду­са и по величине составляют 4828 метров. Но постепенно моряки всего мира со­шлись на том, что удобнее всего пользо­ваться для измерения расстояний на море величиной дуги, соответствующей одной угловой минуте меридиана. Так до сих пор и измеряют моряки свои пути и расстояния именно минутами дуги меридиана. А чтобы придать этой мере название, похо­жее на названия других путевых мер, ок­рестили минуту меридиана милей. Ее дли­на составляет 1852 метров.

Слово «миля» нерусское, поэтому заг­лянем в «Словарь иностранных слов». Там написано, что слово это английское. Потом сообщается, что мили бывают разные: гео­графическая миля (7420 м), сухопутные мили различны по величине в разных го­сударствах, наконец, морская миля - 1852,3 метра .

Все верно сказано о миле, кроме анг­лийского происхождения слова; на самом деле оно латинское. В древних книгах миля встречалась довольно часто и означала ты­сячу двойных шагов. Из Рима, а не из Анг­лии, впервые пришло к нам это слово. Так что в словаре ошибка Но эту ошибку мож­но понять и простить, так как составитель словарной статьи имел, конечно, в виду международную морскую, или, как англи­чане ее называют, адмиралтейскую, милю. В петровские времена она пришла к нам именно из Англии. У нас ее так и называли - английская миля. Иногда и сегодня ее называют так же.

Пользоваться милей очень удобно. Поэтому моряки и не собираются пока заменять милю какой-нибудь другой ме­рой.

Проложив свой путь на меркаторской карте по линейке, рассчитав и запомнив, какого курса при этом следует придержи­ваться, моряк смело может пускаться в плавание, не задумываясь над тем, что его путь, прямой как стрела, на карте вовсе не прямая линия, а как раз та самая кривая, о которой говорилось чуть раньше, - лок­содромия.

Это, конечно, не кратчайший путь между двумя точками. Но если эти точки лежат не очень далеко друг от друга, то моряки не огорчаются и мирятся с тем, что сожгут лишнее горючее и истратят лиш­нее время на переход. Зато на этой карте локсодромия выглядит прямой, которую ничего не стоит построить, и можно быть уверенным, что приведет она как раз туда, куда нужно. А если предстоит большое плавание, такое, например, как переход через океан, при котором дополнительные затраты на кривизну пути выльются в зна­чительную сумму и время? В этом случае моряки научились строить на меркаторс­кой карте другую кривую - ортодромию, что значит по-гречески «прямой путь». Ор­тодромия на карте совпадает с так называемой дугой большого круга, которая и является на море кратчайшим расстояни­ем между двумя точками.

Плохо укладываются в сознании эти два понятия: кратчайшее расстояние и дуга, стоящие рядом. С этим тем более трудно примириться, если смотреть на меркаторскую карту: ортодромия выгля­дит значительно длиннее, чем локсодро­мия. Если на меркаторской карте обе эти кривые проложить между двумя точками, ортодромия изогнется, как лук, а локсод­ромия вытянется, как тетива, стягиваю­щая его концы. Но не нужно забывать, что плавают-то корабли не по плоской карте, а по поверхности шара. А на поверхности шара отрезок дуги большого круга как раз и будет кратчайшим расстоянием.

С единицей измерения расстояний в море - милей - тесно связана единица скорости, принятая в мореплавании, - узел, о чем мы расскажем дальше.

Если на линии курса, проложенной на карте, периодически откладывать рассто­яния, пройденные кораблем, то судоводи­тель всегда будет знать, где находится его корабль, то есть координаты своего места в море. Такой метод определения коорди­нат называется счислением пути и широ­ко применяется в навигационной про­кладке. Но необходимым условием для этого является умение определять скорость корабля и измерять время, только тогда можно рассчитать пройденное рас­стояние.


Указатели скорости корабля. 2. Скляночки. 2. Лаг ручной. 3. Лаг механический


Выше мы уже говорили, что на кораб­лях парусного флота для измерения времени применялись песочные часы, рассчитан­ные на полчаса (склянки), один час и на че­тыре часа (вахта). Но были на кораблях и еще одни песочные часы - скляночки. Все­го на полминуты были рассчитаны эти часы, а в отдельных случаях даже на пятнадцать секунд. Можно только удивляться искусст­ву стеклодувов, ухитрявшихся изготовить такие точные по тем временам приборы. Как ни малы были эти часы, как ни коро­ток был промежуток времени, который они отмеряли, услуга, которую оказывали в свое время эти часы морякам, неоценима, и их, так же как и склянки, вспоминают каждый раз, когда говорят об определении скорости корабля, а также при измерении пройденного пути.

Проблема определения пройденного и предстоящего пути всегда стояла и сто­ит перед моряками.

Первые способы замера скорости были едва ли не самыми примитивными из навигационных определении: просто с носа корабля бросали за борт кусочек де­рева, коры, птичье перо или другой плава­ющий предмет и одновременно замечали время. Идя вдоль борта с носа на корму корабля, не выпускали из глаз плывущий предмет и, когда он проходил срез кормы, вновь замечали время. Зная длину кораб­ля и время, за которое предмет проходил ее, рассчитывали скорость хода. А зная общее время в пути, составляли приблизительное представление и о пройденном расстоянии.

На парусных судах при очень слабых ветрах этим древним способом определя­ют скорость судна и сегодня. Но уже в XVI веке появился первый лаг. Из толстой доски делали сектор градусов в 65-70, ра­диусом около 60-70 сантиметров. По дуге, ограничивающей сектор, укрепляли, как правило, свинцовый груз в виде поло­сы, рассчитанный таким образом, что сек­тор, брошенный в воду, погружался на две трети стоймя и над водой оставался виден небольшой уголок. К вершине этого угол­ка крепили тонкий прочный трос, кото­рый называли лаглинь. В секторе, прибли-зителыю в геометрическом центре погру­женной части, сверлили коническое отвер­стие 1,5-2 сантиметра диаметром и к нему плотно подгоняли деревянную проб­ку, к которой прочно привязывали лаглинь сантиметрах в восьми - десяти от при­крепленного к углу лага конца. Эта проб­ка довольно прочно держалась в отверстии погруженного лага, но резким рывком ее можно было выдернуть.

Зачем же так сложно крепили лаглинь к сектору лага? Дело в том, что плоское тело, движущееся в жидкой среде, распо­лагается перпендикулярно направлению движения, если сила, движущая это тело, приложена к его центру парусности (ана­логично воздушному змею). Стоит, одна­ко, перенести точку приложения сил к краю этого тела или к его углу, и оно, как флаг, расположится параллельно направ­лению движения.

Так и лаг, когда бросают за борт дви­жущегося судна, держится перпендику­лярно направлению хода его, так как лаг­линь прикреплен к пробке, стоящей в цен­тре парусности плоскости сектора. При движении судна сектор испытывает боль­шое сопротивление воды. Но стоит резко дернуть лаглинь, как пробка выскакивает из гнезда, точка приложения силы пере­носится на угол сектора, и он начинает планировать, скользить по поверхности воды. Сопротивления он практически не испытывает, и в таком виде вытащить сек­тор из воды было совсем нетрудно.

В лаглинь на расстоянии примерно 15 метров друг от друга (точнее, 14,4 м) вплетались короткие шкертики (тонкие кончики), на которых были завязаны один, два, три, четыре и так далее узелков. Иног­да отрезки между двумя соседними шкер тиками тоже называли узлами. Лаглинь вместе со шкертиками наматывался на не­большую вьюшку (типа катушки), кото­рую удобно было держать в руках.

Двое матросов становились на корму корабля. Один из них бросал сектор лага за борт и держал в руках вьюшку. Лаг, упав в воду, упирался и сматывал лаглинь с вьюшки вслед за идущим кораблем. Мат­рос же, подняв над головой вьюшку, вни­мательно следил за сматывающимся с вьюшки лаглинем и, как только первый шкертик подходил близко к кромке кор­мового среза, кричал: «Товсь!» (это значит «Готовься!»). И почти вслед за этим: «Вертай!» («Переворачивай!»).

Второй матрос держал в руках скля­ночки, рассчитанные на 30 секунд, но ко­манде первого переворачивал их и, когда весь песок пересыпался в нижний резер­вуар, кричал: «Стоп!»

Первый матрос резко дергал лаглинь, деревянная пробочка выскакивала из от­верстия, сектор лага ложился плашмя на воду и переставал сматывать лаглинь.

Заметив, сколько шкертиков-узелков ушло за борт при сматывании лаглиня, матрос определял скорость хода корабля в милях в час. Сделать это было совсем не­трудно: шкертики вплетались в лаглинь на расстоянии 1/120 мили, а часы показывали 30 секунд, то есть 1/120 часа. Следователь­но, сколько узлов лаглиня смоталось с вьюшки за полминуты, столько миль ко­рабль прошел за час. Отсюда и пошло вы­ражение: «Судно идет со скоростью столько-то узлов» или «Корабль делает столько-то узлов». Таким образом, узел на море - не линейная путевая мера, а мера скорости. Это нужно твердо усвоить, потому что, говоря о скорости, мы так при­выкли прибавлять «в час», что, бывает, и читаем в самых авторитетных изданиях «узлов в час». Это, конечно, неправильно, ибо узел - это и есть миля/час.

Сейчас ручным лагом уже никто не пользуется. Еще М.В. Ломоносов в своей работе «О большей точности морского пути» предложил механический лаг. Опи­санный М.В. Ломоносовым лаг состоял из вертушки, похожей на большую сигару, вдоль которой были расположены под уг­лом к оси крылья-лопасти, как на роторе современной гидротурбины. Вертушку, привязанную в лаглиню, сделанному из троса, который почти не скручивался, М.В. Ломоносов предлагал опускать за кор­му идущего судна. Она, естественно, вра­щалась тем быстрее, чем быстрее был ход этого судна. Передний конец лаглиня предлагалось привязывать к валу механи­ческого счетчика, который должен был крепиться на корме судна и отсчитывать пройденные мили.

Ломоносов предложил, описал, но не успел построить и испытать свой механи­ческий лаг. Уже после него появилось не­сколько изобретателей механического лага: Уокер, Мессон, Клинток и другие. Их лаги несколько отличаются друг от друга, но принцип их работы тот же, который был предложен М.В. Ломоносовым.

Еще совсем недавно, едва судно или корабль выходили в море, штурман с мат­росом выносили на верхнюю палубу вер­тушку лага, лаглинь и счетчик, который обычно называли машинкой. Вертушку с лаглинем броетли за борт, а машинку кре­пили на планшире кормового среза, и штурман списывал в навигационный жур­нал показания, которые значились на ее циферблате на момент начала работы. В любой момент, взглянув на циферблат та­кого лага, можно было довольно точно уз­нать о пути, пройденном кораблем. Есть лаги, которые одновременно показывают и скорость в узлах.

В наше время на многих кораблях ус­тановлены более совершенные и точные лаги. Их действие основано на свойстве воды и всякой другой жидкости оказывать давление на движущийся в ней предмет, увеличивающееся по мере увеличения ско­рости движения этого предмета. Не очень сложное электронное устройство величи­ну этого давления (динамического напора воды) передает в прибор, установленный на мостике или на штурманском команд­ном пункте корабля, предварительно, ко­нечно, преобразив эту величину в мили и узлы.

Это так называемые гидродинамичес­кие лаги. Есть и более совершенные лаги для определения скорости судна относи­тельно морского дна, то есть абсолютной скорости. Такой лаг работает по принци­пу гидролокационной станции и называ­ется гидроакустическим.

В заключение скажем, что слово лаг происходит от голландского log, что озна­чает расстояние.

Итак, получив в свое распоряжение компас, навигационную карту и единицы измерения расстояния и скорости -милю и узел, штурман может спокойно вести на­вигационную прокладку, периодически от­мечая на карте расстояния, пройденные кораблем. Но наличие счислимых коорди­нат своего места в море нисколько не от­вергает обсервованных, то есть определен­ных инструментальным способом по небес­ным светилам, радиомаякам или по береговым ориентирам, нанесенным на карту, а, наоборот, обязательно их подра­зумевает. Разницу между счислимыми ко­ординатами и обсервованными моряки на­зывают невязкой. Чем меньше невязка, тем искуснее штурман. При плавании в види­мости берегов определять обсервованное место лучше всего по маякам, которые днем хорошо видны, а ночью излучают свет.

Немного найдется на свете инженер­ных сооружений, о которых сложено столько преданий и легенд, как о маяках. Уже в поэме «Одиссея» древнегреческого поэта Гомера, датируемой VIII-VII века­ми до н.э., рассказывается, что жители Итаки зажигали костры для того, чтобы ожидаемый домой Одиссей мог узнать родную гавань.

Вдруг на десятые сутки явился нам
берег отчизны.
Выл он уж близок; на нем все огни
уж могли различить мы.
Это, собственно, первые упоминания об использовании моряками огней обык­новенных костров в навигационных целях при плаваниях вблизи берегов в ночное время.

С тех далеких времен прошли века, прежде чем маяки приобрели знакомый для всех внешний вид - высокая башня, увенчанная фонарем. А когда-то выполняв­шие функцию первых маяков смоляные бочки или жаровни с углем пылали прямо на земле или. на высоких шестах. Со вре­менем для увеличения дальности видимо­сти источников света они устанавливались на искусственных сооружениях, достигав­ших порой грандиозных размеров. Наибо­лее почтенный возраст имеют маяки Сре­диземного моря.

Одно из семи чудес древнего мира - Александрийский, или Фаросский, маяк высотой 143 метра, сооруженный из бе­лого мрамора в 283 году до н.э. Строитель­ство этого самого высокого сооружения древности продолжалось 20 лет. Огром­ный и массивный маяк, окруженный спи­рально идущей лестницей, служил путе­водной звездой для моряков, показывая им путь днем дымом от сжигаемой на его вер­шине нефти, а ночью - с помощью огня, как говорили древние, «более блестящего и неугасимого, нежели звезды». Благодаря специальной системе отражения света дальность видимости огня в ясную ночь до­стигала 20 миль. Маяк был построен на острове Фарос у входа в египетский порт Александрию и служил одновременно на­блюдательным пунктом, крепостью и ме­теостанцией.

Не меньшей известностью пользовал­ся в древности и знаменитый Колосс Ро­досский - гигантская бронзовая фигура Гелиоса, бога Солнца, установленная на острове Родос в Эгейском море в 280 году до н.э. Сооружение ее длилось 12 лет. Эта тоже считавшаяся одним из семи чудес света статуя высотой 32 метра стояла в Родосской гавани и служила маяком до разрушения ее землетрясением в 224 году до н. э.

Кроме названных маяков, в тот пери­од было известно еще около 20. Сегодня из них уцелел только один - маячная баш­ня у испанского портового города Ла-Корунья. Возможно, что этот маяк сооружен еще финикийцами. За свою долгую жизнь он не раз подновлялся римлянами, но в целом сохранил свой первозданный вид.

Строительство маяков развивалось чрезвычайно медленно, и к началу XIX века на всех морях и океанах земного шара их насчитывалось не больше сотни. Это объясняется прежде всего тем, что имен­но в тех местах, где маяки были более все­го нужны, их сооружение оказывалось очень дорогим и трудоемким делом.

Источники света маяков непрерывно совершенствовались. В XVII-XVIII веках в фонарях маяков горело одновременно несколько дюжин свечей массой по 2- 3 фунта (около 0,9-1,4 кг). В 1784 году по­явились масляные лампы Арганда, в кото­рых фитиль получал масло под постоян­ным напором, пламя перестало коптить и сделалось более ярким. В начале XIX века на маяках стали устанавливать газовое ос­вещение. В конце 1858 года на Верхнефорлендском маяке (английский берег Ла-Манша) появилась электрическая освети­тельная аппаратура.

В России первые маяки были построе­ны в 1 702 году в устье Дона и в 1704 году на Петропавловской крепости в Петербурге. Строительство старейшего маяка на Балти­ке - Толбухина близ Кронштадта - растя­нулось чуть ли не на 100 лет. Здание начали строить по приказу Петра I. Сохранился его собственноручный эскиз с указанием основ­ных размеров башни и припиской: «Протчее дастся на волю архитектору». Соору­жение каменного здания требовало значи­тельных средств и большого числа искусных каменщиков. Строительство затягивалось, и царь приказал срочно построить временную деревянную башню. Его приказание было выполз юно, и в 1719 году нa Котлинском ма­яке (название происходит от косы, на кото­рой он был установлен), вспыхнул свет. В 1736 году была предпринята еще одна по­пытка возвести каменное здание, но закон­чить его удалось только в 1810 году. Проект разрабатывался с участием талантливого русского зодчего АД. Захарова, создателя зда­ния Главного Адмиралтейства в Петербур­ге. С 1736 года маяк носит имя полковника Федора Семеновича Толбухина, разгромив­шего в 1705 году шведский морской десант на Котлинской косе, а затем военного ко­менданта Кронштадта


Древнейшие маяки мира. 1, 2. Старинные маяки с открытым огнем. 3. Фаросский (Александрийский) маяк. 4. Маяк Ла-Корунья


Круглую невысокую, кряжистую баш­ню Толбухина маяка знают десятки поко­лений русских моряков. В начале 70-х го­дов XX века маяк реконструировали. Бе­рег вокруг искусственного островка укрепили железобетонными плитами. На башне сейчас установлена современная оптическая аппаратура, позволяющая уве­личить дальность видимости огня, и пер­вая в стране автоматическая ветровая электростанция, обеспечивающая его бес­перебойное действие.

В 1724 году в Финском заливе начал работать маяк Керн (Кокшер) на острове того же наименования. К началу XIX века на Балтийском море действовало 15 мая­ков. Это старейшие маяки в России. Срок их службы превышает 260 и более лет, а маяк Кыпу на острове Даго существует уже более 445 лет.

На некоторых этих сооружениях впервые внедрялась новая маячная техни­ка. Так, на Кери, которому в 1974 году ис­полнилось 250 лет, в 1803 году был уста­новлен восьмигранный фонарь с масляны­ми лампами и медными отражателями -? первая в России светооптическая система. В 1858 году этот маяк оборудуется (так­же первой в России) френелевой системой освещения (по фамилии изобретателя французского физика Огюстена Жана Френеля). Эта система представляла собой оптическое устройство, состоявшее из двух плоских зеркал (бизеркал), располо­женных под малым (в несколько угловых минут) углом друг к другу.

Таким образом, Кери дважды стал ро­доначальником различных систем освеще­ния: капитрической - зеркальной отра­жающей системы, и диоптрической - системы, основанной на преломлении све­та при прохождении через отдельные пре­ломляющие поверхности. Переход на эти оптические системы во многом улучшил качественные характеристики маяка и повысил эффективность обеспечения бе­зопасности мореплавания.

Роль маяков выполняли и известные 34-мстровые Ростральные колонны, со­оруженные в 1806 году в ознаменование славных побед России на море. Они ука­зывали на разветвление Невы на Большую и Малую Неву и были установлены по обе стороны Стрелки Васильевского острова.

Один из старейших маяков на Черном море - Тарханкутский с башней высотой 30 метров. Он вошел в эксплуатацию 16 июня 1817 года. На одном из зданий маяка начертаны слова: «Маяки - святы­ня морей. Они принадлежат всем и непри­косновенны, как послы держав». Сегодня его белый огонь виден на 17 миль. Кроме того, он оборудован радиомаяком и зву­ковой сигнализацией.

В 1843 году на самой оконечности Карантинного мола Одесского залива был поставлен брандвахтенный постдом с мач­той, на которой с помощью лебедки под­нимали два масляных фонаря. Таким об­разом, этот год следует считать годом рождения Воронцовского маяка. Однако настоящий маяк на Карантинном молу был открыт только в 1863 году. Это 30-фу­товая (более 9 м) чугунная башня, увенчан­ная специальным фонарем.

В 1867 году одесский маяк стал пер­вым в России и четвертым в мире, переве­денным на электрическое освещение. Во­обще переход на новый источник энергии происходил крайне медленно. В 1883 году из пяти тысяч маяков земного шара толь­ко 14 были с электрическими источника­ми света. Остальные же еще работали на керосиновых, ацетиленовых и газовых све­тильниках и горелках.

После того как рейдовый мол значи­тельно удлинили, в 1888 году был постро­ен новый Воронцовский маяк, который простоял до 1941 года. Это была чугунная башня высотой 17 метров. В дни обороны Одессы маяк пришлось взорвать. Но имен­но он изображен на медали «За оборону Одессы». Новый маяк, тот, что мы видим сегодня, построен в начале 1954 года. Баш­ня, имеющая цилиндрическую форму, стала намного выше - 30 метров, не считая 12-метрового основания. В маленьком до­мике, что на втором причале, смонтиро­вано дистанционное управление всеми ме­ханизмами. Строгая белая башня, стоящая на самом краю рейдового мола, изображе­на на марках и почтовых открытках и ста­ла одним из символов города.

К 1917 году на всех морях России было построено 163 световых маяка. Наиболее слаборазвитую сеть маяков имели моря Дальнего Востока (всего 24 при протяжен­ности побережий в несколько тысяч ки­лометров). На Охотском море, например, действовал всего лишь один маяк - Ели­завета (на острове Сахалин), на Тихооке­анском побережье также, один - Петро­павловский на подходе к порту Петропав­ловск-Камчатский.

Во время войны значительная часть маяков была разрушена. Из 69 маяков на Черном и Азовском морях оказались пол­ностью уничтоженными 42, из 45 на Бал­тийском море - 16. Всего же было разру­шено и уничтожено 69 маячных башен, 12 радиомаяков, 20 звукосигнальных ус­тановок и более ста светящих навигаци­онных знаков. Почти все сохранившиеся объекты средств навигационного оборудо­вания находились в неудовлетворительном состоянии. Поэтому после окончания вой­ны Гидрографическая служба ВМФ при­ступила к восстановительным работам. По данным на 1 января 1987 года, на морях нашей страны действовало 527 световых маяков, из них 174 - на морях Дальнего Востока, 83 - на Баренцевом и Белом мо­рях, 30 - на побережье Северного Ледо­витого океана и 240 - на других морях.

В начале 1982 года огни еще одного дальневосточного маяка - Дум восточ­ная - загорелись на побережье Охотско­го моря. В пустынной местности между Охотском и Магаданом на склоне сопки поднялась 34-метровая красная чугунная башня.

В 1970 году закончилось строитель­ство стационарного маяка в Таллинском заливе в 26 километрах к северо-западу от порта Таллин (Эстония).


Современные манки. 1. Маяк Песчаный (Каспийское море). 2. Маяк Чибуйиый (остров Шумшу). 3. Маяк Передний Сиверсов (Черное море). 4. Маяк Пильтун (остров Сахалин). 5. Маяк Швентой (Балтийское море). 6. Маяк Таллии


Маяк Таллин был первым в СССР автоматическим ма­яком, все системы которого получают питание от атомных изотопов. Маяк ус­тановлен на глубине 7,5-10,5 метра в районе банки Таллинмадал на гидротех­ническом основании (каменная постель диаметром 64 метра и железобетонный конический массив-гигант с диаметром основания 26 метров). Коническая фор­ма основания (45°) значительно снижает ледовые нагрузки на сооружение. Маяк ограждает банку и обеспечивает подхо­ды к порту. Железобетонная монолитная цилиндрическая башня маяка высотой 24,4 метра заканчивается остекленным круговым стальным фонарным сооруже­нием. Общая высота маяка от уровня моря 31,2 метра, от дна - 41 метр. Баш­ня облицована чугунными тюбингами, ок­рашена в черный (нижняя уширенная часть), оранжевый (средняя часть) и бе­лый (верхняя часть) цвета. Имеет восемь этажей, в которых размещены техничес­кие и служебные помещения (изотопная энергетическая установка - на первом этаже). Светооптический аппарат обеспе­чивает дальность действия белого огня на 28 километров. Таллинский маяк обору­дован радиомаяком дальностью действия 55 километров, радиолокационным мая­ком-ответчиком и аппаратурой системы телеуправления всеми навигационными средствами маяка. На высоте 24,2 метра установлена тяжелая бронзовая мемори­альная доска, на которой, отлиты назва­ния эскадронных миноносцев, стороже­вых кораблей, подводных лодок и вспо­могательных судов - всего 72 корабля, погибших во время Великой Отечествен­ной войны в районе Таллина.

Маяки, подобные таллинскому, не нуждаются в обслуживающем персонале. Поэтому в настоящее время взят курс на строительство именно таких маяков.

Среди маяков, построенных и введен­ных в действие за последние годы, особое место принадлежит автоматическому ма­яку Ирбенский. Он построен в открытом море на гидротехническом основании. Все технические средства маяка работают ав­томатически. Маяк оборудован вертолет­ной площадкой.

Значительное место в навигационном оборудовании, особенно в последнее вре­мя, стали занимать импульсные светотех­нические средства, с внедрением которых отпадает необходимость в сложных опти­ческих системах. Светотехнические им­пульсные системы, обладающие огромной силой света, особенно эффективны на высокозасвеченных фонах портов и городов.

Для предупреждения об опасных ме­стах, расположенных в отдалении от бере­га, или в качестве приемных при подходе к портам используются плавучие маяки, представляющие собой суда специальной конструкции, стоящие на якорях и имею­щие маячное оборудование.

Чтобы уверенно опознать маяки днем, им придают различную архитектурную форму и окраску. Ночью же и в условиях плохой видимости экипажам кораблей помогает то, что каждому из маяков при­сваиваются радиосветовые и акустические сигналы определенного характера, а так­же огни различных цветов - все это эле­менты кода, по которому моряки опреде­ляют «имя» маяка.

На каждом корабле или судне имеет­ся справочник «Огни и знаки», в котором, содержатся сведения о типе постройки каждого маяка и его окраске, высоте его башни, высоте огня над уровнем моря, ха­рактере (постоянном, проблесковом, зат­мевающемся) и цвете маячного огня. Кро­ме того, данные о всех средствах навига­ционного оборудования морей внесены в соответствующие лоции и обозначены на навигационных картах у мест их располо­жения.

Дальность действия светящих мая­ков - 20-50 километров, радиомаяков - 30-500 и более, маяков с воздушными акустическими сигналами - от 5 до 15, с гидроакустическими сигналами - до 25 километров. Акустические воздушные сигналы ныне подают наутофоны - реву­ны, а раньше на маяках гудел колокол, пре­дупреждая об опасном месте - о мелях, рифах и других навигационных опасностях.

Сейчас трудно себе представить мо­реплавание без маяков. Погасить их свет - все равно, что каким-то образом убрать звезды с небосклона, используемые мореплавателями для определения места корабля астрономическим способом.

Выбором мест, установкой, обеспече­нием непрерывного действия маяка зани­маются люди особой специальности - гидрографы. В военное время их работа приобретает особое значение. Когда утром 26 декабря 1941 года корабли Черномор­ского флота и корабли, входившие в состав Азовской флотилии и Керченской военно-морской базы, начали высадку десанта на северо-восточное побережье Керченского полуострова, успешным действиям десан­та способствовало хорошо организованное гидрографическое обеспечение. Накануне высадки были оборудованы створы из двух светящих портативных буев вблизи бере­га на подходах к Феодосии, а также уста­новлены ориентирные огни, в том числе и на скале Эльчан-Кая.

Глухой ночью 26 декабря лейтенанты Дмитрий Выжулл и Владимир Моспан скрытно высадились с подводной лодки Щ-203, на резиновой шлюпке добрались до обледенелой отвесной скалы, с большим трудом поднялись с аппаратурой на ее вер­шину и установили там ацетиленовый фо­нарь. Этот огонь надежно обеспечивал подход наших кораблей с десантом к бе­регу, а также являлся хорошим ориенти­ром для подходивших к Феодосии десант­ных судов. Подводная лодка, с которой вы­садились смельчаки, была вынуждена отойти от скалы и погрузиться из-за появ­ления вражеского самолета. В установлен­ное время к месту встречи с гидрографа­ми лодка не подошла, а поиск их, произ­веденный несколько позднее, закончился неудачей. Имена лейтенантов Дмитрия Ге­расимовича Выжулла и Владимира Ефимо­вича Моспана занесены на мемориальную доску погибших, установленную в здании Гидрографического отдела Черноморско­го флота, их фотографии помещены на стенде гидрографов, погибших в годы Ве­ликой Отечественной войны, в Главном управлении навигации и океанографии.

Во время героической обороны Сева­стополя Херсонесский маяк под непре­рывной бомбежкой и артобстрелом про­должал действовать, обеспечивая вход и выход кораблей.

В период третьего штурма города, 2 июня - 4 июля 1942 года, на Херсонес обрушились атаки более 60 вражеских бомбардировщиков. Все жилые и служеб­ные помещения маяка были разрушены, оптика разбита.

Начальник маяка, отдавший флоту более 50 лет своей жизни, Андрей Ильич Дударь, несмотря на тяжелое ранение, ос­тавался на боевом посту до конца. Вот строки из ходатайства о присвоении пас­сажирскому теплоходу имени «Андрей Дударь»: «... потомственный моряк Чер­номорского флота - его дед был участ­ником первой обороны Севастополя, отец 30 лет служил смотрителем Херсонесского маяка. Родился Андрей Ильич на маяке, служил матросом на эскадрен­ном миноносце «Керчь». По окончании гражданской войны работал по восста­новлению флота. Великую Отечествен­ную войну начал в должности начальни­ка маяка...» Работа на маяке требует от людей особой закалки. Жизнь маячников устроенной не назовешь, особенно зимой. Народ этот большей частью суровый, не­избалованный.

У маячников удивительно остро отто­чено чувство долга и ответственности. Од­нажды Александр Блок писал матери из маленького порта Аберврак в Бретани: «Не­давно на одном из вертящихся маяков умер сторож, не успев приготовить ма­шину к вечеру. Тогда его жена заставила детей вертеть машину руками всю ночь. За это ей дали орден Почетного легиона». Американский поэт-романтик Г. Лонгфел­ло, автор замечательного эпоса о народном герое индейцев «Песнь о Гайавате», так писал о вечной связи маяка с судном:

Как Прометей, прикованный к скале, Держа похищенный у Зевса свет, Встречая грудью шторм в ревущей мгле, Он посылает морякам привет: «Плывите, величавые суда!»

Океан заставил гидрографов создать целую систему защиты от морских опас­ностей, которая совершенствовалась вме­сте с мореплаванием. Она будет развивать­ся и совершенствоваться до тех пор, пока существуют океан и корабли.

Таким образом, при плавании вблизи берегов маяки, вершины гор, отдельные приметные места на побережье давно слу­жат ориентирами для моряков. Определив по компасу направления (пеленги) на два-три таких предмета, моряки получают на карте точку - место, в котором находит­ся их корабль. А как быть, если нет при­метных мест или берег скрылся за гори­зонтом? Именно это обстоятельство дол­гое время было непреодолимым препятствием для развития мореплавания. Даже изобретение компаса - ведь он по­казывает лишь направление движения суд­на - не разрешило проблему.

Когда стало известно, что можно оп­ределить долготу по хронометру, а широ­ту - по высотам светил, потребовался на­дежный угломерный прибор для опреде­ления высот.

Прежде чем появился и утвердил свое превосходство угломерный прибор, устра­ивающий моряков, секстант, немало дру­гих приборов, его предшественников, пере­бывало на кораблях. Самым первым среди них, пожалуй, Была, морская астролябия - бронзовое кольцо с делениями на граду­сы. Через центр проходила алидада (линей­ка), обе половины которой были смеще­ны относительно друг друга. При этом край одной был продолжением противо­положного края другой, дабы линейка воз­можно точнее проходила через центр. На алидаде имелось два отверстия: большое - для поиска светила, а малое - для его фик­сирования. Во время измерений ее держали или подвешивали за кольцо.


Угломерные приборы и хронометр. 1. Астролябия. 2. Квадрант. 3. Хронометр. 4. Секстант


Такой ин­струмент годился лишь для грубых наблю­дений: он колебался не только во время качки и в ветреную погоду, но и от простого прикосновения рук. Тем не менее самые первые дальние плавания были со­вершены именно с подобным прибором.

Впоследствии в употребление вошло астрономическое кольцо. Кольцо тоже приходилось подвешивать, но во время измерений не было надобности касаться его руками. Крошечный солнечный зай­чик, проникая через отверстие на внутрен­нюю поверхность кольца, падал на шкалу с делениями. Но и астрономическое коль­цо было примитивным прибором.

Вплоть до XVIII века навигационным инструментом для измерения углов служил посох Иакова, известный также под назва­ниями астрономический луч, стрела, зо­лотой жезл, но больше всего как градшток. Он состоял из двух реек. На длинную рей­ку перпендикулярно ей была насажена под­вижная поперечная. На длинной рейке на­несены деления на градусы.

Для измерения высоты звезды наблю­датель располагал длинную рейку одним концом у глаза, а короткую передвигал так, чтобы она одним своим концом коснулась звезды, а другим - линии горизонта. Одна и та же короткая рейка не могла служить для измерения любых высот звезд, поэто­му к прибору их прилагалось несколько. Несмотря на свое несовершенство, град­шток просуществовал около ста лет, пока в конце XVII века известный английский мореплаватель Джон Дэвис не предложил свой квадрант. Он состоял из двух секто­ров с дугой в 65 и 25° с двумя подвижны­ми диоптрами и одним неподвижным в общей вершине секторов. Наблюдатель, глядя в узкую прорезь глазного диоптра, проектировал нить предметного диоптра на визируемый предмет. После этого сум­мировали отсчет по дугам обоих секторов. Но и квадрант был далек от совершенства. Стоя на раскачивающейся палубе, совме­щать нить, горизонт и солнечный зайчик было делом нелегким. В спокойную пого­ду это удавалось, но на волнении высоты измерялись очень грубо. Если солнце све­тило сквозь мглу, его изображение на ди­оптре расплывалось, а звезды и вовсе были невидимы.

Для измерения высот нужен был при­бор, который позволял бы совместить све­тило с линией горизонта один раз и неза­висимо от движения корабля и положе­ния наблюдателя. Идея устройства такого прибора принадлежит И. Ньютону (1699), но сконструирован он был Дж. Гадлеем в Англии и Т. Годфреем в Америке (1730- 1731) независимо друг от д руга. Этот мор­ской угломерный прибор имел шкалу (лимб), которая составляла одну восьмую окружности, и потому был назван октан. В 1757 году капитан Кампелл усовершен­ствовал этот навигационный инструмент, сделав лимб в одну шестую окружности, прибор получил название секстант. Им можно измерять углы до 120°. Секстан, так же как и его предшественник октан, от­носится к многочисленной группе инстру­ментов, в которых использован принцип двойного отражения. Поворачивая боль­шое зеркало прибора, можно послать от­ражение светила на малое зеркало, совме­стить край отраженного светила, напри­мер солнца, с линией горизонта и в этот момент взять отсчет.

Стечением времени секстан совершен­ствовался: была поставлена оптическая трубка, ввели ряд цветных фильтров для защиты глаза от яркого солнца во время наблюдений. Но, несмотря на появление этого совершенного угломерного прибора и на то, что к середине XIX века мореход­ная астрономия стала уже самостоятельной наукой, методы определения координат были ограничены и неудобны. Определять широту и долготу в любое время суток мо­ряки не умели, хотя ученые и предложили ряд громоздких и трудных математических формул. Эти формулы практического рас­пространения не получили. Широту обыч­но определяли только раз в сутки - в ис­тинный полдень; в этом случае формулы уп­рощались, а сами расчеты сводились к минимуму. Хронометр позволял опреде­лить долготу в любое время суток, но при этом надо было знать широту своего места и высоту солнца. Лишь в 1837 году англий­ский капитан Томас Сомнер благодаря сча­стливой случайности сделал открытие, ока­завшее значительное влияние на развитие практической астрономии, он разработал правила получения линии равных высот, прокладка которых на карте меркаторской проекции давала возможность получить обсервованное место. Эти линии были назва­ны сомнеровыми в честь открывшего их ка­питана.

Имея секстант, хронометр и компас, штурман может вести любой корабль, не­зависимо от того, есть на нем другие, пусть даже самые современные навигационные электронные комплексы. С этими испы­танными временем приборами моряк сво­боден и независим от любых превратнос­тей в открытом море. Штурман, пренеб­режительно относящийся к секстану, рискует оказаться в тяжелом положении.

(1) В 1928 году Международное гидрографичес­кое бюро приняло округленное значение средней величины, равное 1852 метра. СССР присоединил­ся к этому решению в 1931 году (Циркуляр ГУ ВМС № 317 от 8 июля 1931 года).

Вперед
Оглавление
Назад

Компасом называют навигационный прибор, предназначенный для определения курса судна и направлений на различные береговые или плавучие предметы, находящиеся в поле зрения судоводителя. Компас используется также для определения направления ветра и дрейфа судна. По показанию магнитного компаса производится управление судном, с его помощью определяют пеленги на береговые предметы. Обычно магнитный компас устанавливается на высоком открытом месте в диаметральной плоскости судна.

В магнитном компасе использовано свойство магнитной стрелки устанавливаться своими концами в направлении действующего на нее магнитного поля. На стрелку судового компаса, кроме магнитного поля земли, действует также магнитное поле, создаваемое на судне железным корпусом и железными предметами оборудования. Под действием этих двух сил магнитная стрелка устанавливается в плоскости компасного меридиана. Магнитный компас подвержен влиянию и других внешних сил, возникающих при качке, поворотах судна, которые выводят стрелку из устойчивого положения. На стрелку компаса влияет также вибрация корпуса от работы двигателя.

У морских магнитных компасов роль стрелки выполняет система из четырех, шести и более тонких магнитов, помещенных в котелок с жидкостью, обеспечивающей быстрое гашение колебаний магнитной системы.

У компасов, которыми пользуются на суше, в том числе и туристских, шкала с градусным делением нанесена на корпусе компаса. Такой компас, установленный на судне, будет вращаться вместе с судном и шкалой отсчета. - ЗАЧЕМ ВСЕ ЭТО??????????????????????????

Воздушный поплавок поддерживает магнитную систему на плаву, что обеспечивает минимальное трение в точке подвеса. Морской магнитный компас снабжен специальным устройством –девиацион-ным прибором, уменьшающим воздействие на магнитную систему компаса магнитного поля железного корпуса судна. С помощью карданового подвеса обеспечивается горизонтальное положение котелка во время качки, крена и дифферента.НЕТ ОСНОВНОЙ ФОРМУЛЫ

3.2.Способы определения поправки компаса.ИМЕЕТСЯ В ВИДУ ГИРОКОМПАС

Поправкой компаса называется величина параметра (курса или пеленга), компенсирующая систематическую ошибку его измерения.

Для определения поправки любого компаса необходимо сравнить истинное и компасное направления на один и тот же ориентир, т.е:

∆МК = ИП – КП.

Определение поправки компаса по створу. ИП створа снимают с карты. КП берут в момент пересечения створной линии. Определение поправки компаса по береговым естественным створам (например, срезам двух мысов). В момент пересечения линии естественных створов снимают компасный пеленг и сравнивают его с направлением линии, снятой с карты, проходящей через срезы двух мысов.

Определение поправки компаса по пеленгу отдаленного ориентира. Этот способ применяют при стоянке судна на якоре, когда место ориентира и стоянки точно известно.

Определение поправки компаса по сличению с другим компасом, поправка которого известна. Способ применяют для определения поправки главного и путевого магнитных компасов путем сличения показаний с гирокомпасом, поправка которого известна. По команде два наблюдателя одновременно замечают курс по обоим компасам. Определяют:

∆МК = (ГКК + ∆ГК) – КК.

Определение поправки компаса при определении места судна по трем пеленгам. При определении места судна по трем пеленгам возможно появление так называемого треугольника погрешностей, т. е. проложенные линии положения не пересекаются в одной точке. Когда имеется уверенность в правильном опознании ориентиров и в отсутствии грубых погрешностей в пеленгах, а треугольник получается большим, то это свидетельствует о погрешности в принятой поправки компаса. Чтобы исключить такую погрешность, а заодно и определить действующую поправку компаса, поступают

следующим образом:

– все пеленги изменяют на 3-5 0 в ту или иную сторону, и после прокладки получают новый треугольник погрешностей;

– через сходственные вершины старого и нового треугольников погрешностей проводят линии, а точку М их пересечения принимают за обсервованное место судна, свободное от влияния систематической погрешности в поправке компаса ∆К;

– точку М соединяют с ориентирами на карте и измеряют транспортиром полученные истинные пеленги. Сравнив их с компасными пеленгами тех же ориентиров, находят три значения поправки компаса ∆К = ИП – КП. Среднее арифметическое из полученных результатов принимают за действительную поправку на данном курсе.

При определении поправки компаса астрономическим способом в качестве компасного направления используется пеленг на светило, измеренный с помощью пеленгатора, а в качестве истинного направления – счислимый азимут данного светила, вычисленный на момент измерения табличным или машинным способом.

Необходимо соблюдать следующие условия:

1. Использовать для уточнения ∆К светила, находящиеся на небольшой высоте (h< 30°) и вблизи диаметральной плоскости судна (КУ< 30°);

2. Измерения следует производить сериями из 3-5 пеленгов с перефиксацией пеленгатора;

3. Пеленга измеряют с точностью до 0,1°, моменты замеров фиксируют с точностью не хуже 2-3 с;

4. Счислимый азимут нужно перевести в круговой счет, т.е. ИП = А к.

Существует несколько способов определения АК по светилам:

1.Определение ∆К по светилу, находящемуся на произвольном азимуте;

2.Определение ∆К по Солнцу в момент его истинного восхода и захода;

3.Определение ∆К по наблюдениям Полярной звезды.

Первый способ – основной и наиболее распространенный, два других являются его частными случаями. Он выполняется в следующей последовательности:

Пример: 24 августа 2006года, Средиземное море. В Т с = 20:46′ ; N=1E; Измерили серию компасных пеленгов: α Скорпиона

– КП ср = 219,5°; Т гр.ср. = 19:45′ 07″ , ϕ с = 33°19,0′ N; λ c = 21°43,0′ E; КК = 196,0°, определить ∆К.

1. Вычисляют по МАЕ δ и t м звезды α Скорпиона на Т гр.ср. =19: 45′ 07″

2. Вычисляют истинный пеленг светила одним из способов:– по таблицам ТВА:

С помощью калькулятора по формулам ПТ: ОБОЗНАЧЕНИЯ СУДОВДЫ НЕ ПОЙМУТ

Ctg A = cosϕ · tgδ · cosec tм - sinϕ · ctg tм

Сtg A = 0,8356∗ - 0,4975 ∗ 1,4525 – 0,5493 · 1,0547 = -1,1825

А = arcctg – 1,1825 = 40,22°; А к = 220,2°

на компьютере с использованием программы "Электронный альманах” А к = 220,2°

3. Рассчитывают поправку компаса:

∆К = ИП – КП = 220,2° - 219,5° = + 0,7°. – обозначения в формулах НЕПОНЯТНЫ

Определение ∆К по Солнцу в момент его восхода и захода:

Если в момент восхода, либо захода Солнца (в момент касания горизонта его нижним краем) измерить его компасный пеленг, то можно быстро и достаточно точно определить поправку компаса. Специфика данного способа состоит в том, что в момент восхода (захода) Солнца высота его центра равна совершенно конкретной величине (- 24,4′ см. МТ-2000), поэтому искомый Азимут является функцией двух параметров – широты и склонения. Поэтому А с легче вычисляется и проще табули-руется. Для расчета азимута Солнца используется таблица 3.37 МТ-2000. Входными аргументами в табл.3.37 являются счислимая широта - ϕ с, снятая с прокладки на момент замера компасного пеленга, и склонение Солнца - δ о, которое выбирают из МАЕ на гринвичский момент восхода (захода). Табличный азимут дан в полукруговом счете; первая буква наименования при этом одноименна со счислимой широтой, а вторая при восходе Солнца – Е, а при заходе – W.

Следует помнить, что полученная таким образом мгновенная поправка компаса, менее точна и надежна, чем полученная основным способом, поэтому её чаще используют только для контроля.

Пример:12 апреля 2006г; Черное море. ϕ с = 44°25,0′ N; λ c = 34°12,0′ E; КК = 92,0°; Т с = 06:08′ ; N=3E; Измерили компасный пеленг Солнца в момент его восхода: КПо = 77,2°; определить ∆К.

1. Определяют гринвичское время восхода и на полученный момент выбирают из МАЕ склонение Солнца:

Т гр = Т с ± N W/E = 06:08′ – 3 = 03: 08′

На Т гр = 03:08′ 12.04.02 из МАЕ - δ о = 08°36,0′ N

2. Входят в табл. 3.37 МТ-2000 с ϕ с = 44°25,0′ N и δ о = 08°36,0′ N и получают на 12 апреля А т = N 77,7° Е, с учетом

интерполяции по ϕ и δ о получают А к = ИП = 77,5°.

3. Вычисляют ∆К = ИП – КП = 77,5° - 77,2° = + 0,3° . ТОЖЕ САМОЕ – НЕПОНЯТНО ЧТО К ЧЕМУ

3.3. Практические способы определения девиации магнитного компаса.

Обычно остаточную девиацию определяют после ее уничтожения, но иногда определение девиации может выполняться как самостоятельная работа. Такая необходимость появляется, если обнаружено заметное расхождение наблюдаемой девиации на отдельных курсах с ее табличными значениями, а также при перевозке металлических грузов, после плавания во льдах, при существенном изменении судном широты.

Различают полное определение девиации для составления таблицы девиации и частичное, на отдельных курсах, с целью контроля работы магнитного компаса.

Для составления таблицы девиацию чаще всего определяют на восьми главных и четвертных компасных курсах, затем по наблюдаемым величинам девиации вычисляют коэффициенты девиации А, В, С, D и Е. Далее по известным коэффициентам рассчитывают таблицу девиации на любое количество курсов, используя формулу (1). В зависимости от величины коэффициентов таблицу девиации вычисляют на 24 или 36 курсов. Если какой-либо коэффициент превышает 3°, таблицу составляют через 10°, а при меньших коэффициентах - через 15°. Аргументом входа в таблицу является компасный курс.

Таблица девиации подписывается лицом, производившим ее определение. В таблицу также заносятся рассчитанные значения коэффициентов девиации.

Определение девиации выполняют на пале или на малом ходу судна, причем прежде, чем приступить к определению девиации на новом курсе, необходимо выждать 3 - 5 мин, необходимых для перемагничивания судна. На каждом курсе следует по возможности определить девиацию из 3 - 5 наблюдений, а результат осреднить. Точность снятия отсчета пеленга или курса должна быть не ниже 0,2°.

Все основные способы определения девиации сводятся к сравнению магнитных направлений (пеленгов, курсов) с направлениями, измеренными по компасу. Для вычисления девиации применяют следующие формулы:

δ = МП - КП,

δ = ОМП - ОКП, (1)

δ = МК - КК

Все способы определения девиации различаются только методом получения величины магнитного пеленга или курса. Основные способы определения девиации являются:

- Определение девиации по створу или по вееру створов - является наиболее точным способом. Сущность способа заключается в том, что в момент пересечения створа замечают пеленг по компасу.

Магнитное направление створа рассчитывают по истинному направлению и величине

Веер створов (рис. 24) позволяет определить девиацию несколько раз на одном курсе. Магнитные направления веера створов даются в лоциях или в описаниях девиационных полигонов. Если в районе определения девиации не имеется створов, нанесенных на карту, то можно использовать створ любых предметов (приметных башен, зданий, мачт, мысов и т.п.). Магнитное направление такого створа приближенно рассчитывают как среднее из восьми направлений, измеренных по компасу на главных и четвертных курсах,

- Определение девиации по пеленгу отдаленного предмета производят, когда отсутствуют створы в районе работ. Чаще этот способ выполняют, когда место судна не меняется или меняется незначительно, т.е. при стоянке судна на девиационном пале, бочках и т.п. Величина магнитного пеленга может быть получена с карты, если место судна известно с высокой точностью. Если же такой возможности нет, опять рассчитывают магнитный пеленг как средний из восьми измеренных компасных на главных и четвертных румбах по формуле (2). При развороте судна на новый курс место его на местности не остается постоянным, и при этом изменяется величина МП. Очевидно, что способ можно применять только тогда, когда изменение пеленга Δ от среднего значения не превысит определенной допустимой величины. Из рис. 25 видно, что между расстоянием до ориентира D, радиусом окружности, внутри которой изменяется положение судна (компаса), r и углом Δ существует соотношение:

если задать Δ = 0,2°, то D = 300r. (3)

Таким образом, например, при r = 100 м расстояние до ориентира должно быть не менее 16,2 мили.

Способ может применяться и на ходу судна, но при этом пеленг на отдаленный предмет берут в тот момент, когда судно проходит в непосредственной близости от заранее установленного буйка или вешки. Примерная схема маневрирования при определении девиации указанным способом приведена на рис. 26.

Определение девиации по сличению с главным магнитным компасом обычно производят у путевого компаса, так как возможности измерения пеленга с него не имеется. На восемь главных и четвертных курсов ложатся по путевому компасу, а магнитный курс рассчитывают по КК главного компаса. Девиацию путевого компаса δп получают по следующим формулам:

МК=ККгл+δгл. δп=МК - ККп (4)

или по рабочей формуле, полученной после подстановки первого уравнения во второе,

δп=ККгл - ККп+δгл. (5)

Сличение показаний компасов, т. е. одновременное фиксирование курса производят 3 - 5 раз и выводят среднее значение.

Определение девиации по взаимным пеленгам можно выполнять, когда на видимости не имеется створов и отдаленных предметов, а представляется возможность свезти на берег компас и установить его на треноге. Место установки компаса должно обеспечивать взаимную видимость компаса и судна.

При определении девиации по какому-нибудь сигналу (спуск обусловленного сигнального флага, команда по радио и т.п.) измеряют одновременно пеленг с берега и судна. Пеленг с берегового компаса представляет собой МП + 180°, поэтому легко рассчитать и величину девиации.

Определение девиации по сличению с гирокомпасом - распространенный способ на судах, имеющих гирокомпас. Сущность способа заключается в том, что магнитный курс получают, определив истинный из показаний гирокомпаса, а склонение выбирают с карты. В процессе определения девиации судно последовательно ложится на восемь главных и четвертных курсов по магнитному компасу. На каждом курсе одновременно замечают (сличают) курсы по гирокомпасу и магнитному компасу.

Расчет девиации производят последовательно по следующим формулам:

ик=гкк+Δгк,

МК = ИК - d, δ=МК - КК

или по рабочей формуле, полученной из них, (6)

δ = ГКК-КК+(ΔГК - d),

где ГКК н ΔГК - курс по гирокомпасу и поправка компаса соответственно.

Сличение выполняют 3 - 5 раз, а полученные девиации осредняют.

Способ следует выполнять на самом малом ходу, избегая поворотов на большой угол, так как при этом сводятся к минимуму погрешности в поправке гирокомпаса от влияния ускорений.

Кроме рассмотренных способов, применяют способ определения девиации по пеленгам небесных светил, если имеется возможность измерить пеленг на светило (Солнце, Луну, звезду) и рассчитать его азимут.

Во время плавания необходимо использовать любую возможность для регулярного определения девиации на отдельных курсах с целью контроля достоверности таблицы девиации. Для этого чаще всего используют определения поправки компаса по створам, по пеленгам небесных светил и по сличению с гирокомпасом.

3.4. Принцип работы гирокомпаса, учет погрешностей в его показаниях. Способы определения поправки гирокомпаса.

Основными приборами курсоуказания является гирокомпас. Основой всех гироскопических курсоуказателей является гироскоп (быстро вращающееся твердое тело), а работа этих курсоуказа-телей основана на свойстве гироскопа сохранять неизменным направление оси вращения в пространстве без действия моментов внешних сил.

Принцип действия гирокомпаса можно описать с помощью упрощенной схемы, приведенной на рисунке 27. Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна. Предположим, что гирокомпас находится на экваторе, а ось вращения его гироскопа совпадает с направлением запад - восток (позиция a); она сохраняет свою ориентацию в пространстве в отсутствие воздействия внешних сил. Но Земля вращается, совершая один оборот в сутки. Так как наблюдатель, находящийся рядом, вращается вместе с планетой, он видит, как восточный конец (E) оси гироскопа поднимается, а западный (W) опускается; при этом центр тяжести шара смещается к востоку и вверх (позиция б). Однако сила земного притяжения препятствует такому смещению центра тяжести, и в результате ее воздействия ось гироскопа поворачивается так, чтобы совпасть с осью суточного вращения Земли, т. е. с направлением север - юг (это вращательное движение оси гироскопа под действием внешней силы называется прецессией). Когда ось гироскопа совпадет с направлением север - юг (N - S, позиция в), центр тяжести окажется в нижнем положении на вертикали и причина прецессии исчезнет. Поставив метку "Север" (N) на то место шара, в которое упирается соответствующий конец оси гироскопа, и соотнеся ей шкалу с нужными делениями, получают надежный компас. В реальном гирокомпасе предусмотрены компенсация девиации компаса и поправка на широту места. Действие гирокомпаса зависит от вращения Земли и особенностей взаимодействия ротора гироскопа с его подвесом.

а) б) в)

Рис.27 Принцип работы гирокомпаса

Для сокращения времени прихода в меридиан гирокомпасы имеют устройство для ускорен-ного приведения в меридиан. Если с помощью такого устройства установить и удерживать ЧЭ ГК в меридиане с точностью до 2÷3°, то время прихода в положение равновесия сокращается до 1÷1,5 часов (min 45 мин.) Главная ось ЧЭ работающего ГК на движущемся судне вследствие наличия динамических и статических погрешностей располагается по направлению гироскопического меридиана, не совпадающего с истинным меридианом.

Динамические погрешности:

скоростная погрешность, которая возникает вследствие угловой скорости вращения плоскости истинного горизонта из-за движения судна по поверхности Земли. Эта погрешность устраняется в ГК с помощью специального счетно-решающего механизма-корректора ГК (вводом в него ИК, V, φ); инерционные погрешности I и II рода, которые возникают при изменении курса и скорости судна. ГК по окончании маневра приходит в новое положение равновесия через 25-30 мин. Эти погрешности устраняются в ГК регулировкой периода незатухающих колебаний ЧЭ ГК (84,3 мин.) и применением масляного успокоителя в ЧЭ;

погрешность от качки, которая обусловлена раскачиванием ЧЭ ГК относительно его главной оси. Исключается стабилизацией ЧЭ в плоскости горизонта.

Статические погрешности: наличие трения в подвесах гиромоторов; непостоянство скорости вращения роторов гиромоторов; неточная установка основного прибора в ДП судна; действие магнитных полей. Эти погрешности, характеризующие устойчивость работы ГК на неподвижном основании, определяются опытным путем. Если удастся исключить все указанные погрешности, то главная ось ЧЭ ГК устанавливается в направлении истинного меридиана (NИ), а следящая система позволяет непосредственно снимать это направление и передавать на репитеры ГК. Направляющий момент ГК во много раз больше, чем у МК, и не зависит от магнитного поля Земли. Однако с увеличением широты (φ) он уменьшается пропорционально cos φ, и в высоких

широтах (> 75°) ГК работает менее надежно.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ МОРСКОЙ УНИВЕРСИТЕТ ИМЕНИ АДМИРАЛА

Ф.Ф. УШАКОВА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению лабораторных работ по разделу

"МАГНИТНЫЕ КОМПАСЫ"

дисциплины

"Технические средства судовождения"

для курсантов специальности "Судовождение"

Новороссийск

Составлены:

Профессором кафедры ТСС

Студеникиным А. И.

Рецензент:

Доцент кафедры ТСС

Филатова Р. Г.

Утверждено на заседании кафедры ТСС

“___” _______________20___ г., протокол №______

Стр. Общие методические указания...............................................................4

Работа № 1. Изучение устройства магнитных компасов........................ 5

Работа № 2. Определение девиации магнитного компаса........................ 21

Работа № 3. Устранение полукруговой девиации магнитного

компаса способом ЭРИ.......................................................25

Работа № 4. Изучение дефлектора и инклинатора.................................28

Работа № 5. Устранение полукруговой девиации магнитного

компаса способом Колонга......................................... ..35

Работа № 6. Составление таблицы остаточной девиации

магнитного компаса………………………………………..37

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Лабораторный практикум имеет своей целью развитие у курсантов навыков, необходимых для грамотного практического использования маг­нитных компасов, проведения работ по устранению его девиации и тех­нического обслуживания прибора.

Каждая лабораторная работа достаточного объема и требует обяза­тельной предварительной подготовки. Во время предварительной подготовки к работе це­лесообразно спланировать порядок ее проведения, заготовить необходимые таблицы, распределить обязанности между членами бригады.

В процессе подготовки к защите работы полезно использовать во­просы, приведенные в методических указаниях.

При выполнении лабораторной работы в карманах не должно быть ферромагнитных предметов.

Лабораторная работа № 1.

ИЗУЧЕНИЕ УСТРОЙСТВА МАГНИТНЫХ КОМПАСОВ

Цель работы: Изучение устройства современных дистанционных магнитных ком­пасов.

1 .Изучение технических характеристик магнитных компасов.

2. Изучение устройства магнитных компасов по литературным данным.

1. Общая характеристика магнитных компасов

Магнитные компасы (МК) предназначены для измерения курса судна отно­сительно магнитного меридиана, а также для пеленгования отдельных ориентиров. Все их можно разбить на две группы:

    компасы, имеющие подвижный чувствительный элемент (картушку);

    индукционные компасы (не имеющие картушки).

Первую группу часто называют стрелочными компасами .

В настоящее время в эксплуатации находится большое количество различных моделей компасов, основные технические характеристики которых представлены в таблицах: 1 (современные образцы стрелочных компасов), 2 (образцы стрелочных компасов более раннего года выпуска) и 3 (образцы индукционных компасов). В указанных таблицах приняты следующие обозначения:

    Н – непосредственный отсчёт с картушки компаса,

    О – отсчёт с помощью оптической системы дистанционной передачи информации,

    ЭМ – отсчет с помощью электромеханической системы дистанционной передачи информации,

    Эл – электрическое освещение шкалы компаса

Мф – освещение шкалы компаса с помощью масляного фонаря.

○ – нет данных.

Таблица 1

Основные технические параметры последних образцов МК с картушкой

Технический параметр

Назначение

Крупнотоннажные суда

Путевой, средний тоннаж

Средний, малый тоннаж

Малые суда

Малые суда

Малые суда

Диаметр картушки (мм)

110(видимый)

Магнитный момент (А м 2)

Цена деления (град)

5, крена 15

Кол-во магнитов

1 кольцевой

1 кольцевой

Угол застоя картушки (град)

Период собственных колебаний (с)

Погрешность (град)

Поддерживающая жидкость

Спиртоглицериновая

Таблица №2

Основные технические параметры МК с картушкой более раннего производства

Тип прибора

Параметр

УКПМ

КМ-145-7

КМ-145-8

Область применения

Маломер-ные суда

Суда разных классов

Съём информации

Диаметр картушки [см]

Цена деления шкалы

картушки [ град.]

Магнитный момент картушки [Ам 2 ]

Максим.погрешность

измерения курса[град.]

на неподвижном судне

на подвижном судне

Застой картушки [град.]

Количество магнитов в картушке

Поддерживающая жидкость

34%рас-твор эт. спирта

(ГОСТ 13032-77)

64% раствор этилового спирта

ПМС-5 (ГОСТ 13032-77)

Осветительное устройство

Судовая сеть 127/220 В, f = 50 Гц; Сеть постоянного тока напряжением 24 В

Продолжение таблицы 2

Тип прибора

Параметр

УКПМ

КМ-145-7

КМ-145-8

Диапазон рабочих температур [град.]

От – 40 до + 60

От –26 до +50

Для котелка от -40 до + 60; для остальных приборов комплекта – от – 10 до + 50

Допустимая качка [град.]:

Бортовая

Допустимая скорость циркуляции [град/с]

Вес комплекта [кг]

В зависимости от комплектации

Таблица 3

Основные технические параметры индукционных комп асов

Технический параметр

Горизонт

(Великобрит.)

Ritchie (США)

Состав чувствительного элемента: Феррозондов

Акселерометров

1 кольцевой

Установка индукционного датчика

Карданов

бескардановая

Карданов

бескардановая

Погрешность определения курса (град)

Диапазон регистрации отклонений от заданного курса (град)

Диапазон измерения углов качки судна (град)

Погрешность измерения углов качки судна (град)

Диапазон компенсации полукруговой девиации (град)

Учет девиации

Учет девиации ±45

Учет девиации

Диапазон компенсации креновой девиации (град)

Осреднением показаний

Осреднением показаний

Осреднением показаний

Диапазон компенсации четвертной девиации (град)

Учет девиации

Учет девиации

Учет девиации

Отображение информации

Цифровой

Цифровое,

аналоговое

Цифровой

Цифровое,

аналоговое

Дискретность отсчета (град)

Напряжение питания

220/110В 50Гц; =24 В

Как это следует из таблиц, отдельные модели стрелочных МК позволяют снимать информацию только непосредственно с их картушки, другие снабжены системами дистанцион­ной передачи информации. Поскольку дистанционные МК построены на базе компасов с непосредственным отсчетом, основное внимание сосредоточим на изучении только этих образцов изделий.